Abstract:
Disclosed is a method for preparing a bis(hydroxy-aromatic) compound which comprises the steps of. contacting at least one hal o- substituted hydroxy-aromatic compound in a solvent mixture comprising water and at least one organic solvent in the presence of at least one base, at least one catalyst comprising palladium and hydrogen gas at a pressure in a range of between atmospheric pressure and 350 kilopascals.
Abstract:
A method for brominating hydroxyaromatic compounds to form products, such as pbromophenol, is disclosed. The method uses elemental bromine as the brominating agent and comprises contacting a hydroxyaromatic compound with bromine and oxygen in the presence of metal catalyst. Suitable catalysts include elemental copper, copper compounds, and compounds of Group IV-VIII transition metals.
Abstract:
A cure catalyst is provided. The cure catalyst may include a Lewis acid and one or both of a nitrogen-containing molecule or a non-tertiary phosphine. The nitrogen- containing molecule may include a mono amine or a heterocyclic aromatic organic compound. A curable composition may include the cure catalyst. An electronic device may include the curable composition. Methods associated with the foregoing are provided also.
Abstract:
Disclosed are methods for forming an electronic device that comprises a material that functions as an underfill material as well as a thermal interface material simultaneously. The electronic assembly comprising a heat dissipating element, a semiconductor chip, a substrate and a thermally conductive material is also given here, wherein the thermally conductive material serves as an underfill material as well as a thermal interface material simultaneously.
Abstract:
A method for preparing hydroxyaromatic compounds brominated in the para-position, such as p-bromophenol, is disclosed. The method yields overall high process selectivity through isomeric equilibration and separation of the brominated products, thereby eliminating the need for high para selectivity in the products of catalytic oxybromination reactions of hydroxyaromatic compounds using oxygen, a bromine source, and an acidic medium in the presence of a metal catalyst. Furthermore, the invention provides an efficient method for recycling the metal catalyst, as well as reagents used in the bromination, to further reactions.
Abstract:
A solvent-modified resin composition for use as underfill material is provided. The composition having at least one epoxy resin, at least one solvent and a filler of functionalized colloidal silica. The solvent-modified resin composition is useful in making transparent B-stage resin films. Embodiments of the disclosure include use as a wafer level underfill, and an encapsulant for electronic chips.
Abstract:
A composition is provided that includes a filler, a first curable material, and a second curable material. The first curable material may include an alcohol and an anhydride. At a first temperature (T 1 ) the first curable material may cure and the second curable material may have a degree of conversion that is less than 50 percent. Associated article and method are provided also.
Abstract:
A composition including a first curable and a second curable material is provided. The first curable material may include an alcohol and an anhydride. At a first temperature (Ti) the first curable material may cures and the second curable material may not cure. An associated method is provided.
Abstract:
A B-stageable film that includes a thermal interface material is provided. The film may secure a heat-generating device to a heat-dissipating component, may further cross-link, and may conduct thermal energy from the heat-generating device to the heat-dissipating component. A method of making and using the film is provided, as well as a device that incorporates the film.
Abstract:
Brominated hydroxyaromatic compounds such as p-bromophenol are prepared by contacting a hydroxyaromatic compound with oxygen and a bromine source such as hydrogen bromide or an alkali metal or alkaline earth metal bromide in an acidic medium, in the presence of elemental copper or a copper compound as catalyst. The brominated product of this reaction may be converted alternately to a dihydroxyaromatic compound such as hydroquinone by hydrolyses, or a dihydroxybiphenyl compound such as 4,4'-dihydroxybiphenyl by reductive coupling.