摘要:
A device comprising a semiconductor die and a redistribution portion coupled to the semiconductor die. The redistribution portion includes a passivation layer and a redistribution interconnect comprising a first surface and a second surface opposite to the first surface. The redistribution interconnect is formed over the passivation layer such that the first surface is over the passivation layer and the second surface is free of contact with any passivation layer. The device includes a bump interconnect coupled to the second surface of the redistribution interconnect. In some implementations, the bump interconnect comprises a surface that faces the redistribution interconnect, and wherein an entire surface of the bump interconnect that faces the redistribution interconnect is free of contact with the passivation layer.
摘要:
The present technology is directed to manufacturing collars for under-bump metal (UBM) structures for die-to-die and/or package-to-package interconnects and associated systems. A semiconductor die includes a semiconductor material having solid-state components and an interconnect extending at least partially through the semiconductor material. An under-bump metal (UBM) structure is formed over the semiconductor material and is electrically coupled to corresponding interconnects. A collar surrounds at least a portion of the side surface of the UBM structure, and a solder material is disposed over the top surface of the UBM structure.
摘要:
A microelectronic assembly (10, 110, 210, 310, 410) includes a first substrate (12, 112, 212, 312, 412, 512, 612, 712, 812, 912) having a first conductive element (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022) and a second substrate (14, 114, 214, 314, 414) having a second conductive element (26, 126, 226, 326, 426). The assembly further includes an electrically conductive alloy mass (16, 116) joined to the first and second conductive elements (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022), including a first, a second and a third material. First and second materials of the alloy mass (16, 116) each have a melting point lower than a melting point of the alloy. A concentration of the first material varies in concentration from a relatively higher amount at a location disposed toward the first conductive element (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022) to a relatively lower amount toward the second conductive element (26, 126, 226, 326, 426), and a concentration of the second material varies in concentration from a relatively higher amount at a location disposed toward the second conductive element (26, 126, 226, 326, 426) to a relatively lower amount toward the first conductive element (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022). The microelectronic assembly (10, 110, 210, 310, 410) is formed by aligning the first substrate (12, 112, 212, 312, 412, 512, 612, 712, 812, 912), having a first bond component (30, 230, 330, 430), with the second substrate (14, 114, 214, 314, 414), having a second bond component (40, 240, 340, 440), such that the first (30, 230, 330, 430, 1030) and second (40, 240, 340, 440) bond components are in contact with each other, the first bond component (30, 230, 330, 430, 1030) including a first material layer (36, 536, 636, 736, 836, 936) adjacent the first conductive element (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022) and a first protective layer (38, 538, 638, 738, 838, 938) overlying the first material layer (36, 536, 636, 736, 836, 936), the second bond component (40, 240, 340, 440) including a second material layer (46) adjacent the second conductive element (26) and a second protective layer (48) overlying the second material layer (46), and heating the first (30, 230, 330, 430, 1030) and second (40, 240, 340, 440) bond components such that at least portions of the first (36, 536, 636, 736, 836, 936) and second (46) material layers diffuse together to form the alloy mass (16, 116) joining the first (12, 112, 212, 312, 412, 512, 612, 712, 812, 912) and second (14, 114, 214, 314, 414) substrates with one another. There may be formed a plurality of first conductive elements (26, 126, 226, 326, 426, 526, 626, 726, 826, 926, 1022) on the first substrate (12, 112, 212, 312, 412, 512, 612, 712, 812, 912) and a plurality of second conductive elements (26, 126, 226, 326, 426) on the second substrate (14, 114, 214, 314, 414), joined by a plurality of conductive alloy masses (16, 116). The conductive alloy mass (116) may also surround and hermetically seal an internal volume.
摘要:
The present invention relates to a method for forming a copper pillar on a semi-conducting substrate, the copper pillar having an underbump metallization area comprising a metal less noble than copper and optionally a solder bump on the top portion, and having a layer of a second metal selected from tin, tin alloys, silver, and silver alloys deposited onto the side walls of said copper pillar. A layer of a first metal which is more noble than copper is deposited onto the entire outer surface of the copper pillar prior to deposition of the second metal layer. The layer of a second metal then has at least a reduced number of undesired pin-holes and serves as a protection layer for the underlying copper pillar.
摘要:
Ce procédé de fabrication d'un dispositif microélectronique comportant un premier composant (12) hybridé à un second composant (14) au moyen d'interconnexions électriques, consiste : à réaliser des premier et second composants (12, 14), le second composant (14) étant transparent à un rayonnement ultraviolet au moins au droit d'emplacements prévus pour les interconnexions; à former des éléments d'interconnexion (22) comprenant de l'oxyde de cuivre sur le second composant (14) aux emplacements prévus pour les interconnexions; à reporter les premier et second composants (12, 14) l'un sur l'autre; et à appliquer un rayonnement ultraviolet au travers le second composant (14) sur les éléments comprenant de l'oxyde de cuivre de manière à mettre en œuvre un recuit ultraviolet transformant l'oxyde de cuivre en cuivre.