Abstract:
In order to monitor real-time process and workflows, modular sensors may be deployed and a processing server may receive sensor information from the modular sensors. The processing server may contextualize the received sensor information and generate a real-time process and workflow status based on the contextualized sensor information.
Abstract:
The invention provides for a medical apparatus (300, 400, 500) comprising: a magnetic resonance imaging system (306); magnetic compensation coils (334, 335) for compensating for magnetic inhomogeneities within the imaging zone; a gantry (308) operable for rotating about the imaging zone; a position sensor (312) for measuring the angular position and the angular velocity of the gantry; at least one magnetic field distorting component (310, 510, 512) in the gantry, a memory (362) storing machine executable instructions (380, 382, 410, 530, 532) and field correction data (372). The instructions cause a processor to: receive (100, 200) the position and angular velocity data from the position sensor; determine (102, 202) coil control commands (374) for controlling the magnetic compensation coils using the field correction data, the position data and the angular velocity data; control (104, 204) the magnetic compensation coils to compensate for magnetic inhomogeneities within the imaging zone using the coil control commands; and acquire (106, 212) the magnetic resonance data.
Abstract:
A patient bed, particularly for use in a magnetic resonance (MR) imaging- guided therapy system employing at least one out of ionizing radiation and ultrasound energy for therapy purposes, having an abdominal support portion (14) for supporting an abdominal region (18) of a subject (12) during magnetic resonance-guided therapy, comprising at least one magnetic resonance (MR) radio frequency (RF) antenna device (48) arranged at a top side (26) of the patient bed in a patient bed center region (30), with at least one MR RF antenna (50) that is enclosed in a housing (52) having two side surfaces (54) opposing each other, wherein, in at least one state of operation, each side surface (54) of the MR RF antenna device (48) is provided to be proximal to an inner side of each of the subject's legs (22), and wherein, in the at least one state of operation, the MR RF antenna device (48) is provided to be proximal to a subject's perineum (20); an MR radio frequency (RF) antenna device (48) therefor; and a therapy system employing at least one out of ionizing radiation and ultrasound energy for therapy purposes that is guided by an MR imaging device with a patient bed having at least one MR radio frequency (RF) antenna device (48).
Abstract:
A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
Abstract:
To obtain feedback on image quality from qualified reviewers, an optically machine readable code (124) (e.g., a QR code or the like) is generated for each acquired medical image and embedded into the image. The embedded code includes information to the identity of the image, the imaging device, authorized reviewers, and authorized recipients of the feedback, as well as a link to a feedback form that can be retrieved by a communication device (38) used by an authorized user. When the embedded code is scanned by the communication device, the code is decoded and the feedback form is retrieved from a server, completed by the reviewer, and transmitted back to the authorized recipients of the feedback.
Abstract:
The present disclosure relates to a method for planning an imaging scan protocol to be performed by a scanning imaging system (100), the method comprising simulating for a patient (118) by a virtual reality system (200) an imaging scan, the imaging scan following a chosen imaging scan protocol (141), recording physiological data (152) of the patient (118) generated in response to the simulating and modifying the chosen imaging scan protocol (141) based on the physiological data (152).
Abstract:
When predicting required component service in an imaging device such as a magnetic resonance (MR) imaging device (12), component parameters such as coil voltage, phase lock lost (PLL) events, etc. are sampled to monitor system components. Voltage samples are filtered according to their temporal proximity to coil plug-in and unplug events to generate a filtered data set that is analyzed by a processor (46) to determine whether to transmit a fault report. A service recommendation is received based on the transmitted report and includes a root cause diagnosis and service recommendation that is output to a user interface (50).
Abstract:
The invention provides for a magnetic resonance imaging system (100) comprising a main magnet (104) for generating a main magnetic field within an imaging zone (108). The magnetic resonance imaging system further comprises an RF coil (114) for acquiring magnetic resonance data (164) from the imaging zone, wherein the RF coil comprises multiple RF ports (124, 412, 414, 416, 500, 502, 702, 1004, 1006). The RF coil comprises a switch unit (120) for at least one of the multiple RF ports to individually couple or uncouple the at least one of of the multiple RF ports from the RF coil. The magnetic resonance imaging system further comprises a radio-frequency system (125) for supplying radio-frequency power to each of the multiple RF ports and an RF matching detection system (122) for measuring impedance matching data (166) between the radio-frequency system and the RF coil. Execution of the machine executable instructions causes a processor controlling the magnetic resonance imaging system to measure (200, 300, 302, 304) the impedance matching data using the RF matching detection system; determine (202) switch unit control instructions (168) using the impedance matching data, wherein the switch control instructions contain commands that control the at least one of the multiple RF ports to couple or decouple to impedance match the radio-frequency system to the RF coil; and control (204) the switch unit of the at least one of the multiple RF ports with the switch unit control instructions.
Abstract:
A radio frequency coil (34), for use in a medical modality including at least a magnetic resonance examination system (10), comprises: a right hollow cylinder-shaped patient bore lining (36), an inner carrier member (40) that is fixedly attached to an outwardly directed surface of the patient bore lining (36), a radio frequency antenna (42), fixedly attached to an antenna carrier member (44) made from a composite material, which in turn is fixedly attached to an outwardly directed surface of the inner carrier member (40), at least one outer carrier spacer member (48), arranged on at least one out of the at least one radio frequency antenna (42) or an outwardly directed surface of the antenna carrier member (44), and providing a free end-to-end space (50) in a direction parallel to the center axis (38) of the patient bore lining (36), a right hollow cylinder-shaped outer carrier member (52) with a center axis (54), which in an operational state is arranged in parallel to the center axis (38) of the patient bore lining (36), and is in mechanical contact with outwardly directed surfaces of the outer carrier spacer members (48), and a shell member (58) that is in mechanical contact with an outwardly directed surface of the outer carrier member (52); and a medical modality including at least a magnetic resonance examination system (10) with such radio frequency coil (34).
Abstract:
An interventional therapy system (100, 200, 300, 900) may include at least one catheter configured for insertion within an object of interest (OOI); and at least one controller (102, 202, 910) which: obtains a reference image dataset (540) comprising a plurality of image slices which form a three-dimensional image of the OOI,defines restricted areas (RAs) within the reference image dataset, determines location constraints for the at least one catheter in accordance with at least one of planned catheter intersection points, a peripheral boundary of the OOI and the RAs defined in the reference dataset, determines at least one of a position and an orientation of the distal end of the at least one catheter, and/or determines a planned trajectory for the at least one catheter in accordance with the determined at least one position and orientation for the at least one catheter and the location constraints.