Abstract:
A fluid pressure regulating system includes a turbomachine configured and adapted to pressurize fluid in a first mode and to depressurize fluid in a second mode. An energy exchange device is operatively connected to the turbomachine to provide power to drive the turbomachine in the first mode to pressurize fluid, and to be driven by the turbomachine in the second mode to receive power from depressurization of fluid. The turbomachine and energy exchange device are configured and adapted to selectively switch between the first and second modes to output fluid at a substantially constant pressure using fluid supplied at pressures that vary ranging from above and below the substantially constant pressure.
Abstract:
A turbocharger system comprises a first relatively small turbocharger and a second relatively large turbocharger connected in series and an exhaust gas flow control valve. The exhaust control valve has an inlet port communicating with the exhaust gas flow upstream of the first turbine a first outlet port communicating with the exhaust flow downstream of said first turbine but upstream of said second turbine, and a second outlet port communicating with the exhaust flow downstream of said second turbine. The valve is operable to selectively permit or block flow through the first and second outlet ports.
Abstract:
A turbocharger system comprises a first relatively small turbocharger and a second relatively large turbocharger connected in series and an exhaust gas flow control valve. The exhaust control valve has an inlet port communicating with the exhaust gas flow upstream of the first turbine a first outlet port communicating with the exhaust flow downstream of said first turbine but upstream of said second turbine, and a second outlet port communicating with the exhaust flow downstream of said second turbine. The valve is operable to selectively permit or block flow through the first and second outlet ports.
Abstract:
A gas turbine apparatus is provided wherein a turbine is driven or rotated by burning a mixture of a fuel and compressed air and supplying a combustion gas generated by the combustion. A flameout determination unit is provided in the apparatus which is adapted to calculate the air/fuel ratio in the air/fuel mixture, correct the calculated air/fuel ratio to calculate a corrected air/fuel ratio which is substantially constant, compare the calculated corrected air/fuel ratio with a predetermined reference air/fuel ratio, and generate a signal indicative of occurrence of a flameout when the corrected air/fuel ratio is smaller than the reference air/fuel ratio. The corrected air/fuel ratio is calculated by calculating a deviation of a compressor discharge pressure of the compressed air from an air compressor, from a predetermined reference pressure, multiplying the pressure deviation by a predetermined constant, and adding the pressure deviation multiplied by the predetermined constant to the calculated air/fuel ratio. In this way, the corrected air/fuel ratio can be maintained substantially constant even if a load increases in steps.
Abstract:
The subject matter of this specification can be embodied in, among other things, a method that includes receiving one or more surge value parameters, selecting a first value from a selected parameter of the one of the parameters, determining a moving average, determining a rate of change, identifying a first phase of a surge cycle based on determining that the rate of change exceeds a threshold rate change, memorializing the first value, the moving average value, and a first time index, receiving a second value of the selected parameter, identifying a second phase of the surge cycle, receiving a third value of the selected parameter, identifying a third phase of the surge cycle, and providing an indication that one or more compressor surge cycles have occurred.
Abstract:
The disclosure includes controlling a pressure ratio for a compressing system, comprising introducing a quantity of liquid into an input stream to create a multiphase input stream, compressing the multiphase input stream with a centrifugal compressor to create a discharge stream, measuring a parameter of the discharge stream, wherein the discharge parameter corresponds to a pressure ratio for the centrifugal compressor, when the parameter exceeds a first predetermined point, increasing a pressure ratio of the centrifugal compressor by increasing the quantity of liquid introduced, and when the parameter exceeds a second predetermined point, decreasing the pressure ratio by decreasing the quantity of liquid introduced.
Abstract:
A system for reducing pressure in a gas flow for a gas let-down system comprising: an expander driven by a first gas input; a heat exchanger, wherein an output of the expander is input to the heat exchanger; and a compressor driven by a second gas input; wherein a portion of the heat exchanger output is combined with gas having passed through said compressor, to form an outlet flow; such that the pressure in the outlet flow being lower than the pressure of the first gas input.
Abstract:
An anti-surge system capable of anticipating a surge event in a compressor for readying the actuator to quickly actuate the anti-surge valve from the closed position to the open position. The control system includes a compressor surge controller configured to transmit a signal to the valve positioner when the operating point of the valve is approaching the surge control line. The compressor surge controller may monitor an operating margin equal to the difference between the operating point and the surge control line, and when the operating margin falls below a prescribed threshold, the compressor surge controller may send a signal to the positioner. In turn, the positioner may vent some pressure from the actuator. In this way, the dead time of the anti-surge valve on the valve seat is minimized and the valve will react more promptly to an opening signal.
Abstract:
The present disclosure relates generally to system and method for detecting fuel shutoff valve failures in a system including multiple fuel shutoff valves connected in series. By commanding different fuel shutoff valves to close and detecting changes in the system operating conditions, the system and method may determine if any of the fuel shutoff valves are not working properly.