Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
A system and method of automated incubating and reading of biological indicators is disclosed. In one embodiment, the automated biological indicator incubator is configured to control the temperature of incubation test wells to a desired temperature range suitable for use with a biological indicator, control the incubation period, and detect a change in the biological indicator colored media providing an indication of growth or lack of growth. In other embodiments, the automated biological indicator incubator is self-calibrating, and provides a communication interface to an external device, such as a computer. The communication interface is suitable for use to collect and analyze data associated with the biological indicator during the incubator period, and for making a determination of growth or lack of growth and success of the sterilization process as well as a permanent document of the monitoring of the sterilization process.
Abstract:
An apparatus and method, the apparatus comprising: an information electrode;a ground electrode;a photo-resistive element configured to enable the information electrode to be connected to the ground electrode; and wherein the apparatus is configured to enable a sensor element to be positioned overlaying the photo-resistive element such that a change in optical properties of the sensor element controls the connection between the ground and information electrodes.
Abstract:
A system comprised of an apparatus and a test device is described. The test device and the apparatus are designed to interact to determine the presence or absence of an analyte of interest in a sample placed on the test device.
Abstract:
Methods and assemblies are provided for evaluating plants for presence of pests. Methods may include separating pests from a plant to produce a sample of pests for analysis, illuminating the sample to produce emitted light from the sample, and comparing the emitted light from the sample to a model to discriminate pests within the sample. Assemblies may include a separating unit operable to separate pests from a plant to produce a sample comprising pests, a light source for illuminating at least part of the sample, and an imaging device adjacent the light source for receiving light from the illuminated sample and creating an image of the sample.
Abstract:
Methods and assemblies are provided for evaluating plants for presence of pests. Methods may include separating pests from a plant to produce a sample of pests for analysis, illuminating the sample to produce emitted light from the sample, and comparing the emitted light from the sample to a model to discriminate pests within the sample. Assemblies may include a separating unit operable to separate pests from a plant to produce a sample comprising pests, a light source for illuminating at least part of the sample, and an imaging device adjacent the light source for receiving light from the illuminated sample and creating an image of the sample.
Abstract:
A system and method of automated incubating and reading of biological indicators is disclosed. In one embodiment, the automated biological indicator incubator is configured to control the temperature of incubation test wells to a desired temperature range suitable for use with a biological indicator, control the incubation period, and detect a change in the biological indicator colored media providing an indication of growth or lack of growth. In other embodiments, the automated biological indicator incubator is self-calibrating, and provides a communication interface to an external device, such as a computer. The communication interface is suitable for use to collect and analyze data associated with the biological indicator during the incubator period, and for making a determination of growth or lack of growth and success of the sterilization process as well as a permanent document of the monitoring of the sterilization process.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
A turbidity measurement system (100) with an improved thermal behavior is provided. A turbidity measurement system (100) includes an analyzer (102) and one or more turbidity sensors (104, 106). Each turbidity sensor (104, 106) includes a source of illumination and a semiconductor-based illumination sensor. The dark current of the semiconductorbased illumination sensor is measured when no illumination is provided by the source. This measured dark current is then used to provide a dark current compensated turbidity measurement.