Abstract:
Embodiments of the present invention generally relate to methods for physical vapor deposition processes. The methods generally include synchronizing process chamber conditions with the position of a magnetron. As the magnetron is scanned over a first area of a target, the conditions within the chamber are adjusted to a first set of predetermined process conditions. As the magnetron is subsequently scanned over a second area of the target, the conditions within the chamber are adjusted to a second set of predetermined process conditions different the first set. The target may be divided into more than two areas. By correlating the position of the magnetron with different sets of process conditions, film uniformity can be improved by reducing center-to-edge non-uniformities, such as re-sputter rates which may be higher when the magnetron is near the edge of the target.
Abstract:
Magnetrons for use in physical vapor deposition (PVD) chambers and methods of use thereof are provided herein. In some embodiments, an apparatus may include a support member having an axis of rotation; a plurality of first magnets coupled to the support member on a first side of the axis of rotation and having a first polarity oriented in a first direction perpendicular to the support member; and a second magnet coupled to the support member on a second side of the axis of rotation opposite the first side and having a second polarity oriented in a second direction opposite the first direction. In some embodiments, the apparatus is capable of forming a magnetic field including one or more magnetic nulls that modulate local plasma uniformity in a physical vapor deposition (PVD) chamber.
Abstract:
Methods and apparatus for depositing thin films having high thickness uniformity and low resistivity are provided herein. In some embodiments, a magnetron assembly includes a shunt plate, the shunt plate rotatable about an axis, an inner closed loop magnetic pole coupled to the shunt plate, and an outer closed loop magnetic pole coupled the shunt plate, wherein an unbalance ratio of a magnetic field strength of the outer closed loop magnetic pole to a magnetic field strength of the inner closed loop magnetic pole is less than about 1. In some embodiments, the ratio is about 0.57. In some embodiments, the shunt plate and the outer close loop magnetic pole have a cardioid shape. A method utilizing RF and DC power in combination with the inventive magnetron assembly is also disclosed.
Abstract:
Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
Abstract:
Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate in the chamber.
Abstract:
Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate in the chamber.
Abstract:
The present invention generally includes a sputtering target assembly that may be used in an RF sputtering process. The sputtering target assembly may include a backing plate and a sputtering target. The backing plate may be shaped to have one or more fins that extend from the backing plate towards the sputtering target. The sputtering target may be bonded to the fins of the backing plate. The RF current utilized during a sputtering process will be applied to the sputtering target at the one or more fin locations. The fins may extend from the backing plate at a location that corresponds to a magnetic field produced by a magnetron that may be disposed behind the backing plate. By controlling the location where the RF current is coupled to the sputtering target to be aligned with the magnetic field, the erosion of the sputtering target may be controlled.
Abstract:
Embodiments of the present invention generally relate to an apparatus and method for uniform sputter depositing of materials into the bottom and sidewalls of high aspect ratio features on a substrate. In one embodiment, a sputter deposition system includes a collimator that has apertures having aspect ratios that decrease from a central region of the collimator to a peripheral region of the collimator. In one embodiment, the collimator is coupled to a grounded shield via a bracket member that includes a combination of internally and externally threaded fasteners. In another embodiment, the collimator is integrally attached to a grounded shield. In one embodiment, a method of sputter depositing material includes pulsing the bias on the substrate support between high and low values.
Abstract:
A substrate processing method practiced in a plasma sputter reactor (8) including an RF coil (44) and two or more coaxial electromagnets (78, 80), at least two of which are wound at different radii. After a barrier layer, for example, of tantalum is sputter deposited into a via hole, the RF coil is powered to cause argon sputter etching of the barrier layer and the current to the electromagnets are adjusted to steer the argon ions, for example to eliminate sidewall asymmetry. For example, the two electromagnets are powered with unequal currents of opposite polarities or a third electromagnet wrapped at a different height is powered. In one embodiment, the steering straightens the trajectories near the wafer edge. In another embodiment, the etching is divided into two steps in which the steering inclines the trajectories at opposite angles. The invention may also be applied to other materials, such as copper.
Abstract:
A fabrication method and a product for the deposition of a conductive barrier or other liner layer in a vertical electrical interconnect structure. One embodiment includes within a hole (88) through a dielectric layer (86) a barrier layer (132) of RuTaN, an adhesion layer (112) of RuTa, and a copper seed layer (114) forming a liner for electroplating of copper. The ruthenium content is preferably greater than 50 at% and more preferably at least 80 at% but less than 95 at%. The barrier and adhesion layers may both be sputter deposited. Other platinum-group elements substitute for the ruthenium and other refractory metals substitute for the tantalum. Aluminum alloying into RuTa (192, 194) when annealed presents a moisture barrier. Copper contacts (232, 238) include different alloying fractions of RuTa to shift the work function to the doping type of the silicon (216, 218).