Abstract:
Implementations of the present disclosure generally relate to an improved vacuum processing system. In one implementation, the vacuum processing system includes a first transfer chamber coupling to at least one epitaxy process chamber, a second transfer chamber, a transition station disposed between the first transfer chamber and the second transfer chamber, a first plasma-cleaning chamber coupled to the second transfer chamber for removing oxides from a surface of a substrate, and a load lock chamber coupled to the second transfer chamber. The transition station connects to the first transfer chamber and the second transfer chamber, and the transition station includes a second plasma-cleaning chamber for removing carbon-containing contaminants from the surface of the substrate.
Abstract:
Methodologies, systems, and devices are provided for producing metal spheroidal powder products. Dehydrogenated and spheroidized particles are prepared using a process including introducing a metal hydride feed material into a plasma torch. The metal hydride feed material is melted within a plasma in order to dehydrogenate and spheroidize the materials, forming dehydrogenated and spheroidized particles. The dehydrogenated and spheroidized particles are then exposed to an inert gas and cooled in order to solidify the particles into dehydrogenated and spheroidized particles. The particles are cooled within a chamber having an inert gas.
Abstract:
The invention concerns a device (10) for continuously treating a web substrate (15a) in a plasma enhanced process. The device (10) contains at least one treatment station (12a, 12b) with a vacuum process chamber, wherein at least one plasma treatment unit (13a, 13b) is allocated to the at least one treatment station (12a, 12b) which is designed to form a plasma zone (14a, 14b) within the process chamber for treating a surface of the web substrate (15a). The device (10) further contains a transporting system for continuously transporting the web substrate (15a, 15b) through the at least one treatment station (12a, 12b), with an unwind roller (20) and a rewind roller (21), wherein the transporting system defines a transporting path of the web substrate (15a) through the process chamber. The plasma treatment unit (13a, 13b) contains at least one extensive antenna and at least one radiofrequency generator for exciting said extensive antenna to at least one of its resonant frequencies, wherein the transporting system in the process chamber defines a treatment path section for the web substrate (15a), wherein the treatment path section for the web substrate (15a) lies opposite to and spaced from the extensive antenna.
Abstract:
A plasma processing apparatus includes a toroidal-shape plasma vessel comprising a process chamber. A magnetic core surrounds a portion of the toroidal-shape plasma vessel. An RF power supply having an output that is electrically connected to the magnetic core energizes the magnetic core, thereby forming a toroidal plasma loop discharge in the plasma chamber. A workpiece holder is positioned in the toroidal-shape plasma vessel and includes at least one face. A plasma guiding structure is shaped and dimensioned so as to constrain a section of plasma in the toroidal plasma loop to travel substantially perpendicular to a normal to the at least one face.
Abstract:
An apparatus for plasma treatment of an implant prior to installing the implant in a live subject is provided. The apparatus comprises an activation device and a portable container detachable from the activation device. The portable container comprises a closed compartment containing the implant immersed in a fluid, and the activation device comprises a slot configured to receive the portable container. The activation device further comprises an electrical circuit configured to be electrically associated with at least one electrode and configured to provide to the at least one electrode electric power suitable for applying a plasma generating electric field in the closed compartment, when the portable container is disposed in the slot. A container suitable for providing plasma treatment to a silicone implant and a method for preparing an implant for implantation surgery are also provided.
Abstract:
Embodiments of the present disclosure include methods and apparatuses utilized to reduce residual film layers from a substrate periphery region, such as an edge or bevel of the substrate. Contamination of the substrate bevel, backside and substrate periphery region may be reduced after a plasma process. In one embodiment, an edge ring includes a base circular ring having an inner surface defining a center opening formed thereon and an outer surface defining a perimeter of the base circular ring. The base circular ring includes an upper body and a lower portion connected to the upper body. A step is formed at the inner surface of the base circular ring and above a first upper surface of the upper body. The step defines a pocket above the first upper surface of the upper body. A plurality of raised features formed on the first upper surface of the base circular ring.
Abstract:
A plasma processing system includes a process chamber and a plasma source that generates a plasma in a plasma cavity. The plasma cavity is substantially symmetric about a toroidal axis. The plasma source defines a plurality of outlet apertures on a first axial side of the plasma cavity Plasma products produced by the plasma pass in the axial direction, through the plurality of outlet apertures, from the plasma cavity toward the process chamber. A method of plasma processing includes generating a plasma within a substantially toroidal plasma cavity that defines a toroidal axis, to form plasma products, and distributing the plasma products to a process chamber through a plurality of outlet openings substantially azimuthally distributed about a first axial side of the plasma cavity, directly into a process chamber.
Abstract:
The present disclosure generally relates to apparatus and methods for symmetry in electrical field, gas flow and thermal distribution in a processing chamber to achieve process uniformity. Embodiment of the present disclosure includes a plasma processing chamber having a plasma source, a substrate support assembly and a vacuum pump aligned along the same central axis to create substantially symmetrical flow paths, electrical field, and thermal distribution in the plasma processing chamber resulting in improved process uniformity and reduced skew.
Abstract:
A plasma generator is described which employs a partial PBN liner not only to minimise the loss of energetic gas species during film formation but also to reduce boron impurity levels introduced into the growing film relative to the use of a complete PBN liner. The use of such a plasma generator in a film forming apparatus and method of forming a film is also described.