Abstract:
According to example embodiments, a method includes dispersing carbon nanotubes in a mixed solution containing a solvent, the carbon nanotubes, and a dispersant, the carbon nanotubes including semiconducting carbon nanotubes, the dispersant comprising a polythiophene derivative including a thiophene ring and a hydrocarbon sidechain linked to the thiophene ring. The hydrocarbon sidechain includes an alkyl group containing a carbon number of 7 or greater. The hydrocarbon sidechain may be regioregularly arranged, and the semiconducting carbon nanotubes are selectively separated from the mixed solution. An electronic device includes semiconducting carbon nanotubes and the foregoing described polythiophene derivative.
Abstract:
Die Erfindung betrifft ein Halbleiterbauelement mit einer Schichtanordnung mit einer Elektrode (20a, 20b) aus einem Elektrodenmaterial, einer organischen Halbleiterschicht (22) auss organischem Material, einer Injektionsschicht (21), welche zwischen der Elektrode und der organischen Halbleiterschicht angeordnet ist und aus einem molekularen Dotierungsmaterial besteht, das ein elektrischer Dotand für das organische Material der organischen Halbleiterschicht ist, und einer Zusatzschicht (25), welche auf der der Elektrode zugewandten Seite der Injektionsschicht an der Injektionsschicht angeordnet ist und aus einem Zusatzmaterial besteht, welches bei Kontakt mit dem molekularen Dotierungsmaterial dessen Dotierungsaffinität bezüglich des organischen Materials der organischen Halbleiterschicht verändert, wobei in der Injektionsschicht ein Schichtbereich mit einer ersten Dotierungsaffinität des molekularen Dotierungsmaterials bezüglich des organischen Materials und ein weiterer Schichtbereich mit einer zweiten, im Vergleich zur ersten Dotierungsaffinität kleineren Dotierungsaffinität des molekularen Dotierungsmaterials bezüglich des organischen Materials gebildet sind. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines Halbleiterbauelementes sowie die Verwendung eines Halbleiterelementes.
Abstract:
본 발명은 기판상의 소스/드레인 전극 중 한쪽 전극에만 CS 2 C0 3 등의 용액을 도포하여 전자주입성을 향상시킨 유기박막트랜지스터 및 그를 이용한 금속산화막반도체(CMOS) 디지털 회로에 관한 것으로 기판; 상기 기판 상에 위치한 게이트 전극; 상기 게이트 전극을 포함하는 기판 전면에 걸쳐 위치한 게이트 절연막; 상기 게이트 절연막 상의 일부 영역에 서로 이격되어 위치하는 소스/드레인 전극; 상기 소스/드레인 전극 중 어느 하나에만 도포된 전자주입층; 상기 전자주입층을 포함하는 기판 상에 위치하는 유기반도체층;을 포함하는 것을 특징으로 하는 유기박막트랜지스터로 구성된다.
Abstract:
Inverter circuits and NAND circuits comprising nanotube based FETs and methods of making the same are described. Such circuits can be fabricating using field effect transistors comprising a source, a drain, a channel region, and a gate, wherein the first channel region includes a fabric of semiconducting nanotubes of a given conductivity type. Such FETs can be arranged to provide inverter circuits in either two-dimension or three-dimensional (stacked) layouts. Design equations based upon consideration of the electrical characteristics of the nanotubes are described which permit optimization of circuit design layout based upon constants that are indicative of the current carrying capacity of the nanotube fabrics of different FETs.
Abstract:
Techniques are used to fabricate carbon nanotube devices. These techniques improve the selective removal of undesirable nanotubes such as metallic carbon nanotubes while leaving desirable nanotubes such as semiconducting carbon nanotubes. In a first technique, slot patterning is used to slice or break carbon nanotubes have a greater length than desired. By altering the width and spacing of the slotting, nanotubes have a certain length or greater can be removed. Once the lengths of nanotubes are confined to a certain or expected range, the electrical breakdown approach of removing nanotubes is more effective. In a second technique, a Schottky barrier is created at one electrode (e.g., drain or source). This Schottky barrier helps prevent the inadvertent removal the desirable nanotubes when using the electrical breakdown approach. The first and second techniques can be used individually or in combination with each other.
Abstract:
A process of forming an electronic device, by forming the source and drain contacts using photolithography, incorporating a self-assembled monolayer (SAM) over the electrical contacts to form an increased work function of the source and drain electrodes and further forming more favourable charge injection properties or within the channel region to improve film morphology and therefore improve charge transport. The SAM material is added to the photoresist stripper during a step of the photolithography process of forming electrical contacts.
Abstract:
A method of patterning a flowable material on a surface, the method comprising providing the surface with at least one channel and at least one through- hole with at least two openings, wherein at least one of the openings is located in the surface adjacent to the at least one channel, such that when flowable material is deposited adjacent to another of the at least two openings, the material is directed into the at least one through-hole by the action of capillary forces and emerges at the opening adjacent to the at least one channel whereupon it is further directed along said channel.
Abstract:
An organic thin film transistor, and a method of making the same, comprising a source (2) and drain (4) electrode and organic semi-conductive material (8) disposed therebetween in a channel region, in which the source and drain electrodes have disposed on them a thin self-assembled layer (14) of a material comprising a dopant moiety for chemically doping the organic semi-conductive material by accepting electrons, the dopant moiety having a redox potential of at least 0.3eV relative to a saturated calomel electrode in acetonitrile.