Abstract:
An apparatus comprising: a module; a substrate; and electrolyte between the module and the substrate, wherein an electronic component is formed between the module and the substrate and wherein the electrolyte is configured to function as the electrolyte in the electronic component and also as the adhesive to attach the module to the substrate.
Abstract:
An image sensor is constructed on a substrate that is a read-out transistor array with a multilayer array of infrared photodetectors formed thereon. The infrared photodetectors include a multiplicity of layers including an infrared transparent electrode distal to the substrate, a counter electrode directly contacting the substrate, and an infrared sensitizing layer that comprises a multiplicity of nanoparticles. The layers can be inorganic or organic materials. In addition to the electrodes and sensitizing layers, the multilayer stack can include a hole-blocking layer, an electron-blocking layer, and an anti-reflective layer. The infrared sensitizing layer can be PbS or PbSe quantum dots.
Abstract:
Oxacycloolefinic polymers as typically obtained by metathesis polymerization using Ru-catalysts, show good solubility and are well suitable as dielectric material in electronic devices such as capacitors and organic field effect transistors.
Abstract:
An organic electrical device can include a first dielectric substrate including a PVDF-TrFe-CFE terpolymer, a first semiconductor region coupled to a first surface of the first dielectric substrate, and a first gate region coupled to a second surface of the first dielectric substrate, the second surface opposite the first surface and opposite the first semiconductor region. The organic electrical device can include an organic field-effect transistor (OFET), comprising the first gate region, the first dielectric substrate, a first source region, and a first drain region respectively electrically coupled to the first semiconductor region. An electrostrictive actuator or mechanical sensor can be co-integrated on the first dielectric substrate, the actuator or sensor including first and second conductive regions located on opposite surfaces of the first dielectric substrate. The actuator or sensor can be electrically coupled to the OFET, and controlled at least in part by the OFET.
Abstract:
An embodiment of a system and method provides a carbon nanotube transistor (CNT) mixer with a low local oscillator power requirement and virtually no inter-modulation products. Specifically, an embodiment of the system and method provides two kinds of device current-voltage (I-V) characteristics on the same integrated circuit: exponential and linear. The CNT I-V characteristics support both the ideal exponential control characteristic (determined by physics constants) and the ideal linear control characteristic (also determined by physics constants), resulting in an ideal multiplier. In other words, the CNT mixer is mathematically equivalent to an ideal multiplier. Such an ideal multiplier can be used as a mixer with low local oscillator power requirement and virtually no inter-modulation products.
Abstract:
We describe an integrated organic electronic imaging circuit, the circuit comprising a substrate onto which are integrated: at least one organic photosensor to detect an optical signal; an organic transistor circuit coupled to the organic photosensor, and configured to process information from the detected optical signal and to output a drive signal; and a display, coupled to receive said drive signal from said transistor circuit, to provide a display responsive to the processed detected optical signal. Embodiments of the invention use one or more arrays to compare colours and/or shapes, for example for a child's toy.