Abstract:
A method of fabricating an organic thin film transistor, comprising providing a substrate; forming a patterned interface modification layer (1006, 1007) on the substrate; and forming an organic semiconductor layer (1005) on a side of the interface modification layer (1006, 1007) distal to the substrate, wherein the patterned interface modification layer (1006, 1007) having a pattern of micro structure.
Abstract:
There is provided a material comprising a n-doped electrically conductive polymer comprising at least one electron-deficient aromatic moiety, each electron-deficient aromatic moiety having a gas-phase electron affinity (E A ) of 1-3 eV; and at least one counter-cation covalently bonded to the polymer or to a further polymer comprised in the material, the polymer being n-doped to a charge density of 0.1-1 electron per electron-deficient aromatic moiety, the polymer being capable of forming a layer having a vacuum workfunction (WF) of 2.5-4.5 eV, and wherein all the counter-cations comprised in the material are immobilised such that any electron in the polymer cannot significantly diffuse or migrate out of the polymer. There is also provided a method of preparing the material.
Abstract:
A method of fabricating a thin film transistor, the method includes applying a first ink containing metallic particles to a first screen mask, and using the first screen mask to deposit the first ink to form a source electrode and a drain electrode on a substrate bearing a layer of carbon nanotubes (CNT). The method includes applying a second ink containing a dielectric material to a second screen mask, and using the second screen mask to deposit the second ink to form a layer of the dielectric material on the layer of CNT between the source electrode and the drain electrode. The method includes applying a third ink containing metallic particles to a third screen mask, and using the third screen mask to deposit the first ink to form a metallic gate electrode on the layer of the dielectric material to form the thin film transistor.
Abstract:
The present invention relates to an organic electronic device, comprising a first electrode (11), a second electrode (14), and, between the first and the second electrode, a substantially organic layer (13) comprising a heterocyclic compound bearing at least one Iithoxy group and containing at least one heterocyclic ring comprising a phosphine oxide group directly bound to three carbon atoms; a compound for use in such an organic electronic device and to a semiconducting material comprising the respective compound.
Abstract:
We describe a method for reducing a parasitic resistance at an interface between a conducting electrode region and an organic semiconductor in a thin film transistor, the method comprising: providing a solution comprising a dopant for doping said semiconductor, and depositing said solution onto said semiconductor and/or said conducting electrode region to selectively dope said semiconductor adjacent said interface between said conducting electrode region and said semiconductor, wherein depositing said solution comprises inkjet-printing said solution.
Abstract:
The invention refers to a method for producing an organic transistor, the method comprising steps of providing a first electrode (2) on a substrate (1), generating a source-drain insulator (3) assigned at least partially to the substrate (1) and/or at least partially to the first electrode (2), generating a second electrode (4) assigned to the source-drain insulator (3), depositing an organic semiconducting layer (5) on the first electrode (2), the second electrode (4), and the source-drain insulator (3), generating a gate insulator (6) assigned to the organic semiconducting layer (5), and providing a gate electrode (7) assigned to the gate insulator (6). Further, the invention relates to an organic transistor.
Abstract:
The present invention relates to a methoxyaryl surface modifier. In addition the present invention also relates to organic electronic devices comprising such methoxyaryl surface modifier.