Abstract:
Systems and methods of assembling an elementary stream from an encapsulated multimedia transport stream are disclosed. An exemplary method includes: receiving a command from a user mode video playback component; in response, processing layer-2 packets received through a network interface driver binding to assemble, into an MPEG elementary stream, multimedia transport packets encapsulated within; and supplying the stream to a decoder. The receiving and processing steps are performed in kernel mode. Also disclosed is an exemplary digital home communication terminal that includes a network interface, memory, and a processor. The processor executes code to: receive a command from a user mode video playback component; process layer-2 packets received through a network interface driver binding, in order to assemble into an MPEG elementary stream multimedia transport packets encapsulated within the received layer-2 packets; and supply the elementary stream to a decoder. The receive and process operations are performed in kernel mode.
Abstract:
Décodeur de flux audio/vidéo au format DVB comportant : des moyens de réception d'un flux de données primaire DVB ayant des données de contenu correspondant à une pluralité de canaux; des moyens d'extraction, de séparation et de traitement des données de contenu dudit flux primaire pour produire une pluralité d'ensembles de données, chaque ensemble de données correspondant à un canal; et, des moyens de réémission d'un ensemble parmi lesdits ensembles de données en tant que données de contenu d'un flux de données secondaire dans un protocole de communication locale.
Abstract:
A transmission device and receiving device for providing high-quality multimedia services in a digital multimedia broadcasting (DMB) transmission system is provided. The transmission device separates input multimedia contents into a base layer elementary stream and an enhancement layer elementary stream, encodes the base layer elementary stream and the enhancement layer elementary stream, transforms the base layer elementary stream and the enhancement layer elementary stream into a base layer SL packet and an enhancement layer SL packet, transforms the base layer SL packet and the enhancement layer SL packet into a base layer PES packet and an enhancement layer PES packet, and multiplexes the base layer PES packet and the enhancement layer PES packet according to a base layer elementary stream and an enhancement layer elementary stream and outputs a base layer TS packet and an enhancement layer TS packet.
Abstract:
Systems and methods of assembling an elementary stream from an encapsulated multimedia transport stream are disclosed. In one embodiment, the method is performed in a digital home communication terminal (DHCT). This method comprises the steps of: receiving a layer-2 packet through a binding to a network interface driver; applying at least one filter to the received packet to determine whether the received packet contains one or more multimedia transport packets meeting criteria associated with the filter; and for each multimedia transport packet meeting the applied filter criteria, copying the respective multimedia transport packet to an elementary stream buffer.
Abstract:
Systems and methods of assembling an elementary stream from an encapsulated multimedia transport stream are disclosed. In one embodiment, the method is performed in a digital home communication terminal (DHCT). This method comprises the steps of: receiving a layer-2 packet through a binding to a network interface driver; applying at least one filter to the received packet to determine whether the received packet contains one or more multimedia transport packets meeting criteria associated with the filter; and for each multimedia transport packet meeting the applied filter criteria, copying the respective multimedia transport packet to an elementary stream buffer.
Abstract:
Methods, apparatuses, and systems are presented for switching between channels of encoded media data involving receiving encoded media data including reference frames and dependent frames for a plurality of channels, wherein each dependent frame refers to at least one reference frame. Frames associated with a first channel from the plurality of channels are decoded to generate a decoded signal for the first channel. While decoding frames associated with the first channel, data corresponding to at least one reference frame associated with a second channel from the plurality of channels are stored. In response to a control signal for switching from the first to the second channel, at least one dependent frame associated with the second channel is decoded by utilizing the stored data corresponding to the at least one reference frame associated with the second channel, to generate a decoded signal for the second channel.
Abstract:
The disclosure is directed to a multi-channel encoder. The multi-channel encoder is configured to generate an encoded data stream. The multi-channel encoder includes a plurality of channel encoders, and a processor configured to allocate time slots in the encoded data stream to each of the channel encoders to vary the rate of data provided by each of the channel encoders into the encoded data stream.
Abstract:
A digital broadcasting reception apparatus and robust stream decoding method thereof. The digital broadcasting reception apparatus includes a robust decoder that decodes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust decoder includes a first decoder that trellis-decodes the robust stream; a robust deinterleaver that interleaves the trellis-decoded robust stream; a second decoder that convolution decodes the deinterleaved robust stream; a robust interleaver that interleaves the convolution-decoded robust stream; and a frame formatter that adds decoded data of the second decoder to a part that corresponds to a position of the robust stream of a frame where the normal stream and the robust stream are mixed. Accordingly, a receiver of a simple structure can be provided.
Abstract:
A digital broadcasting transmission and reception system includes a digital broadcasting transmission apparatus and a digital broadcasting reception apparatus. The digital broadcasting transmission apparatus that includes a robust processor that codes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust processor includes a demultiplexer (DE-MUX) that separates the normal stream and the robust stream from the dual transport stream; a robust encoder that appends a parity to the separated robust stream; a robust interleaver that interleaves the robust stream having the appended parity; and a MUX that combines the interleaved robust stream and the separated normal stream. The digital broadcasting reception apparatus includes a robust decoder that decodes a robust stream of a dual transport stream where a normal stream and the robust stream are combined. The robust decoder includes a first decoder that trellis-decodes the robust stream; a robust deinterleaver that interleaves the trellis-decoded robust stream; a second decoder that convolution decodes the deinterleaved robust stream; a robust interleaver that interleaves the convolution-decoded robust stream; and a frame formatter that adds decoded data of the second decoder to a part that corresponds to a position of the robust stream of a frame where the normal stream and the robust stream are mixed. Accordingly, a receiver of a simple structure can be provided.