Abstract:
The invention relates to an automated method for carrying out reactions with a high spatial resolution on libraries of different materials and analysis of the products obtained using a simple robot system and an analyzer, for example a mass spectrometer.
Abstract:
In a measuring method for measuring an atmospheric concentration of a compound, such as a volatile organic compound (VOC), an adsorptive element is provided within a target atmosphere for a period of time to allow adsorption of a compound of interest for mea adsorptive element is measured, and then removed from the target atmosphere, and placed within a closed measuring space. The adsorptive element is heated within the measuring space to cause de-adsorption of the compound into the closed measuring space, and a concentration of the de- adsorbed compound is measured. A concentration of the compound in the target atmosphere is determined based on the concentration of the compound within the closed measuring space. The adsorptive element may be formed of an adsorptive material such as carbon fibers, cellulose or other adsorptive materials, and a binder. The adsorptive element may be optimized for adsorption of a specific compound.
Abstract:
A sensor can include a conductive region in electrical communication with at least two electrodes, the conductive region including a conductive material and an alkene-interacting metal complex.
Abstract:
A sensor can include a conductive region in electrical communication with at least two electrodes, the conductive region including a conductive material and an alkene-interacting metal complex.
Abstract:
The detecting and monitoring of solid structure or phase transformation, such as those used for testing the formation of gas hydrates and their inhibition by chemical additives may be conducted in a multi-test assembly of laboratory bench scale loops. The test loop contains a fluid that includes water and hydrate-forming guest molecules such as methane, ethane, carbon dioxide and the like at hydrate-forming conditions of low temperature and high pressure. A small bit or "pig" may be circulated through the test loop at variable speeds to circulate the fluid in the loop. The pig may be moved or impelled through the test loop remotely. The exterior of the pig and/or the interior of the loop may be smooth and/or have a friction-reducing coating thereon to facilitate movement of the pig through the loop. The formation of hydrates may be monitored with consistent and reproducible results.
Abstract:
A method for detecting an unsaturated compound, the method comprising monitoring change in electrical properties of a substance that reacts or interacts with unsaturated compounds and a sensor for detecting acetylene gas, having a metal halide (in particular CuCl or NiC12 ) as gas sensitive material.
Abstract:
Porous sol-gel material essentially consisting of units of one or more first polyalkoxysilanes chosen from the following compounds: (chloromethyl)triethoxysilane; 1,3-dimethyltetramethoxydisiloxane; ethyltrimethoxysilane; triethoxy(ethyl)silane; triethoxymethylsilane; triethoxy(vinyl)silane; trimethoxymethylsilane; trimethoxy(vinyl)silane; tetraethoxysilane or tetramethoxysilane (TMOS) and of units of one or more second polyalkoxysilanes chosen from the following compounds: (N-(3-(trimethoxysilyl)propyl)ethylenediamine; 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane, in a first polyalkoxysilane/second polyalkoxysilane molar ratio of 1/0.01 to 1/1, optionally comprising a probe molecule, method of preparation and applications in the trapping of monocyclic aromatic hydrocarbons and other pollutants or in their detection.
Abstract:
The invention provides a method for producing a homogenous sample of a pressurized fluid stream flowing in a pipeline, the fluid stream consisting of a majority component of hydrocarbon gas, the remainder consisting of one or more hydrocarbon liquids and water in the form of vapor, aerosols, droplets and/or liquid streams, the method includes the steps of: a. injecting one or more surface active agents into the fluid stream in an injection zone at a rate that is sufficient to form a uniform foam of the gas and the one or more hydrocarbon liquids and water components; b. mixing the one or more surface active agents with the fluid stream in a mixing zone to form a uniform foam composition flowing in the pipeline downstream of the mixing zone; c. withdrawing a portion of the foam composition from the pipeline at a sampling point; d. passing the portion of the foam composition withdrawn through a sampling loop; and e. removing a sample of predetermined volume of the foam composition from the sampling loop for analysis.
Abstract:
Carbon nanotube devices are manipulated in a manner that is useful for a variety of implementations. According to an example embodiment of the present invention, light (632) is used to photodesorb molecules from a carbon nanotube (620).
Abstract:
A process is disclosed for testing material libraries, in particular catalysts, by means of coupled use of at least two analytical methods, preferably IR thermography and mass spectrometry. The rapid integrated determination of potentially "good" materials via IR thermography prevents an excessive loss of time by needing to test all materials of a library successively with the mass spectrometer. The reactor design permits, firstly, the integral recording of the entire reactor through a window which is transparent for the corresponding method and, secondly, permits the simultaneous, automated application of a second analytical method (for example mass spectrometry) to selected materials of material library, which have been rated as active by the optical method. In the case described, the optical method provides information on the material activity for a set problem, and the second analytical method determines the selectivity of the materials.