Abstract:
A gallium nitride (GaN) device with leakage current-based over-voltage protection is disclosed. The GaN device includes a drain and a source disposed on a semiconductor substrate. The GaN device also includes a first channel region within the semiconductor substrate and between the drain and the source. The GaN device further includes a second channel region within the semiconductor substrate and between the drain and the source. The second channel region has an enhanced drain induced barrier lowering (DIBL) that is greater than the DIBL of the first channel region. As a result, a drain voltage will be safely clamped below a destructive breakdown voltage once a substantial drain current begins to flow through the second channel region.
Abstract:
This disclosure relates generally to radio frequency (RF) switching converters and RF amplification devices that use RF switching converters. For example, an RF switching converter may include a switching circuit that receives a power source voltage and a switching controller that receives a target average frequency value identifying a target average frequency. The switching circuit is switchable so as to generate a pulsed output voltage from the power source voltage. The switching controller switches the switching circuit such that the pulsed output voltage has an average pulse frequency. The switching controller also detects that the average pulse frequency of the pulsed output voltage during a time period differs from the target average frequency, and reduces a difference between the average pulse frequency and the target average frequency. In this manner, the effects of manufacturing variations and operational variations on the average pulse frequency can be eliminated, or at least diminished.
Abstract:
Radio frequency (RF) transmitter circuitry, which includes an RF power amplifier (PA) and an envelope tracking power supply, is disclosed. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply signal. The envelope tracking power supply provides the envelope power supply signal, which has switching ripple. Further, the envelope tracking power supply operates in either a normal switching ripple mode or a modified switching ripple mode, such that during the normal switching ripple mode, the envelope power supply signal has normal switching ripple, and during the modified switching ripple mode, the envelope power supply signal has modified switching ripple. When the modified switching ripple is required, the envelope tracking power supply operates in the modified switching ripple mode.
Abstract:
An open loop envelope tracking system calibration technique and circuitry are proposed. A radio frequency power amplifier receives a modulated signal. An envelope tracker power converter generates a modulated power amplifier supply voltage for the radio frequency power amplifier based on a control signal derived from the modulated signal. A first output power and a second output power of the radio frequency power amplifier are measured when the control signal is respectively delayed by a first delay period and a second delay period. A sensitivity of the output power of the radio frequency power amplifier is near a maximum near the first delay period and the second delay period. The first delay period and/or the second delay period are adjusted until the first output power substantially equals the second output power. The first delay period and the second delay period are used to obtain a calibrated fine tuning delay offset.
Abstract:
Disclosed is a coordinate rotation digital computer (CORDIC) having a maximum value circuit that selects a larger of the first component or the second component. A minimum value circuit selects a minimum operand that is a smaller one of the first component or the second component. Also included are N rotator stages, each corresponding to a unique one of N predetermined vectors, each of the N rotator stages having a first multiply circuit to multiply the maximum operand by a cosine coefficient of a predetermined vector to output a first rotation component, a second multiply circuit for multiplying the minimum operand by a sine coefficient of the predetermined vector to output a second rotation component, and an adder circuit for adding the first rotation component to the second rotation component to output one of N results, and a maximum value circuit for outputting a maximum one of the N results.
Abstract:
A power management system for a radio frequency (RF) power amplifier (PA) load is disclosed. The power management system includes a first switching power supply that is adapted to output a relatively constant voltage, an electronic switch for selectively coupling the first switching power supply to the RF PA load, and a second switching power that is adapted to output a dynamic DC voltage to the RF PA load. The power management system further includes a control system that is adapted to close the electronic switch to supply the relatively constant DC voltage in addition to the dynamic DC voltage to the RF PA load in a first mode and to open the electronic switch wherein the relatively constant DC voltage is not supplied to the RF PA load in a second mode.
Abstract:
Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta- module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a portion of the metallic structure for each component area to be shielded is then exposed through the body by a cutting, drilling, or like operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed portion of the metallic structures.
Abstract:
Power control circuitry is provided for controlling an output power of a transmitter of a mobile terminal operating according to a continuous time transmit scheme such as Wideband Code Division Multiple Access (WCDMA). Transmit circuitry processes a quadrature baseband signal to provide a radio frequency transmit signal. The radio frequency transmit signal is coupled to the power control circuitry via a coupler and processed to provide a feedback amplitude signal. The power control circuitry operates to remove an amplitude modulation component from the feedback signal using a reference amplitude signal generated from the quadrature baseband signal, thereby providing a measured gain signal of the transmit circuitry. Based on the measured gain signal and a target output power, the power control circuitry operates to control a gain of the transmit circuitry such that the output power of the transmit circuitry is within a predetermined range about the target output power.
Abstract:
An efficient power amplifier circuitry for a mobile terminal or similar wireless communication device is provided. The power amplifier circuitry includes an output stage configured as a collector controlled Doherty amplifier, wherein the collector controlled Doherty amplifier increases the efficiency of the power amplifier at backoff power levels. The output stage includes main and peaking amplifiers connected in parallel and operating 90 degrees out-of-phase. The main amplifier is controlled using a first variable supply voltage, and the peaking amplifier is controlled using a second variable supply voltage. The first and second variable supply voltages are provided such that the main amplifier is active and the peaking amplifier is inactive for output power levels less than a predetermined backoff from a maximum output power level, and both the main amplifier and peaking amplifiers are active and operating in concert for output power levels greater than the predetermined backoff.