Abstract:
A structure having a carbon nanotube material having a plurality of carbon nanotubes and an electrically or thermally conductive material disposed on at least a portion of the carbon nanotubes, such electrically or thermally conductive material being chemically bonded to such portion of the carbon nanotubes.
Abstract:
본 발명은 고체 콘덴서용 고분자의 도판트로 사용하기 위한 중합체의 제조방법과 이를 이용한 고체 콘덴서용 수분산 전도성 고분자의 제조방법에 관한 것이다. 구체적으로, 본 발명에 따르면 소듐 스티렌술포네이트와 특정 술폰산계 단량체의 중합으로 얻어진 폴리비닐술포닉-co-스티렌술폰산과 같은 술폰산계 중합체를 도판트를 사용함으로써, 기존 대비 높은 항복 전압을 나타내고, 전기적 특성이 우수한 수분산 전도성 고분자의 제조방법이 제공된다.
Abstract:
The present invention relates conductive nanostructured copolymer materials, such as thin film. In particular, the nanostructured copolymer material comprises plurality of chains substantially parallel to each other, each conductive chain comprising a plurality of conductive polyacetylene polymer blocks positioned along the chain and a plurality of polar poly(vinyl alcohol) polymer blocks in between the polyacetylene polymer blocks to form a pattern of alternatively repeating polyacetylene polymer blocks and poly(vinyl alcohol) polymer blocks and a ratio of polyacetylene polymer to poly(vinyl alcohol) polymer to provide the nanostructured copolymer material with conductivity of at least 1 S/cm. In some aspects, the invention relates to photoelectric devices comprising a nanostructured copolymer material and capable to convert light to electrical current.
Abstract:
Durch die Verwendung eines elektrisch leitfähigen PTFE-Gewebes werden Hochspannungsisolationssysteme vereinfacht und können dünner ausgeführt werden, wobei auch die thermische Leitfähigkeit verbessert wird.
Abstract:
The present invention relates to inherently electrostatic dissipative polymers, such as thermoplastic urethanes (TPU), and compositions thereof. The present invention provides a composition comprising: (a) an inherently dissipative polymer and (b) a halogen-free metal salt of an amidoalkanesulfonic acid, a hydrocarbyl-substituted benzenesulfonic acid, or a mixture thereof, or a polymer derived therefrom. The invention also provides a shaped polymeric article comprising the inherently dissipative polymer compositions described herein. The invention also provides a process of making the inherently dissipative polymer compositions described herein. The process includes the step of mixing a halogen-free metal-containing salt into an inherently dissipative polymer.
Abstract:
The invention relates to an additive formulation for the anti-static finishing and improvement of the electrical conductivity of inanimate organic material made of (A) 1 to 50% by weight of an olefin-sulfur dioxide copolymer, (B) 1 to 50% by weight of a compound having alkaline nitrogen atoms with longer-chained hydrocarbon groups with at least 4 carbon atoms or an equivalent structural element, which ensures the solubility of (B) in the inanimate organic material, (C) 0.1 to 30% by weight of an acid soluble in oil, and (D) 1 to 80% by weight of an organic solvent with a high boiling point, wherein at least 80% by weight of the molecule types have a boiling point that is higher than 150ºC at normal pressure.
Abstract:
The welding of certain polymeric nanofibers can be accomplished by exposure to an intense short burst of light, such as is provided by a camera flash, resulting in an instantaneous melting of the exposed fibers and a welding of the fibers where they are in contact. The preferred nanofibers are composed of conjugated, conducting polymers, and derivatives and polymer blends including such materials. Alternatively, the nanofibers can be composed of colored thermoplastic polymeric fibers or opaque polymers by proper selection of the frequency or frequency range and intensity (power) of the light source. The flash welding process can also be used to weld nanofibers which comprise a blend of polymeric materials where at least one of the materials in the blend used to form the nanofiber is a conductive, conjugated polymer or a suitable colored thermoplastic. Alternatively the material blend used to form the nanofibers may comprise a polymeric material containing a colored additive, which is not necessarily a polymer, for example carbon black, or a colored nano-particulate organic or inorganic material, dye or pigment.