Abstract:
An embodiment of the present invention provides a method of quick access channel information loading in wireless networks, comprising mapping at least one quick access channel to one distributed resource unit of control tiles, said control tiles being spread across consecutive sub-carriers and consecutive OFDMA symbols, wherein each control tile and a predetermined number of sub carriers are used to send a bandwidth indicator and a predetermined number of sub carriers are used to send a bandwidth request message, and wherein there exist unique orthogonal sequences for the bandwidth indicator and each of the sequences are capable of being selected as a preamble sequence.
Abstract:
Some wireless communications environments, such as Wi-Fi, may include inexpensive power amplifiers where the power adjustment may not be accurate, and may also include pathloss measurement errors that are high enough to degrade performance of a power control algorithm. To address this issue, an exemplary aspect is directed toward a finite state power control algorithm and technique that, while designed for next generation Wi-Fi standards, such as 802.11ax, can in general be used with any wireless communication protocol or standard.
Abstract:
In one embodiment, the present disclosure provides an evolved Node B (eNB) that includes a device-to-device (D2D) module configured to allocate at least one D2D discovery region including at least one periodic discovery zone, the at least one periodic discovery zone including a first plurality of resource blocks in frequency and a second plurality of subframes in time, the D2D module further configured to configure a User Equipment (UE) to utilize the at least one D2D discovery region for transmitting a discovery packet.
Abstract:
A user equipment (UE) is arranged to send an uplink power reference signal to an enhanced Node B (eNB) associated with multiple reception points (RPs), to receive identification of an RP set and a downlink reference signal power level, to determine a path loss estimate for each downlink reference signal received from RPs of the RP set, to determine an uplink power level that is a function of the path loss estimates determined for the downlink signals received from the RPs of the RP set, and to use the determined uplink power level during communication with the multiple RPs.
Abstract:
Embodiments of a packet structure for frequency offset estimation and method for UL MU-MIMO communication in high-efficiency Wi-Fi (HEW) are generally described herein.In some embodiments,the packet structure may comprise a short training field (STF), a number of long-training fields (LTFs) following the STF, a signal field (SIGB )to follow the LTFs, and a data field to follow the signal field. The data field may comprise an UL MU-MIMO transmission from a plurality of scheduled stations. The number of LTFs may be equal to or greater than a number of data streams as part of the UL MU-MIMO transmission,and the plurality of scheduled stations may share the number of LTFs by transmitting on different orthogonal tone sets.
Abstract:
Various embodiments are generally directed to techniques to identify the target of a packet in a wireless network. A transmitter node may include a connection identifier to generate a unique identifier corresponding to a connection between the transmitter node and a receiver node in the wireless network and a data packet transmitter to embed the unique identifier into a physical layer convergence protocol header corresponding to a packet to be transmitted to the receiver node. A node may include a data packet receiver to receive a physical layer convergence protocol header corresponding to a packet to be transmitted from a transmitter node in the wireless network to a receiver node in the wireless network and a header decoder to decode a unique identifier from the physical layer convergence protocol header, the unique identifier corresponding to a connection between the transmitter node and the receiver node.
Abstract:
An apparatus and method of allowing user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A D2D UE (dUE1) that wishes so communicate to another UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between dUE1 and dUE2 by having the dUE1 measure the signals from dUE2 to help establish a D2D connection between the dUE1 and the dUE2.
Abstract:
A method is provided by the present invention, comprises determining communication channel quality from a first wireless communications device to one or more other wireless communications devices, and assigning a zone/subband and corresponding power level to the one or more other wireless communications devices based on the communication channel quality. The method is directed toward at least addressing the interference from neighboring Access Points (APs), and reducing interference between devices using different power zones/subbands when the wide-band of Orthogonal Frequency-Division Multiple Access (OFDMA) based technologies were adopted in Wi-Fi systems for unlicensed bands.
Abstract:
Examples are disclosed for a system to improve wireless spectral efficiency, including a processor, memory coupled to the processor, a radio coupled to the processor, one or more antennas coupled to the radio, wireless logic to be executed on the processor component to process reception of a high-power request for open sharing (ROS) signal by a master wireless receiver from a master wireless transmitter and to process transmission of a high-power confirmation of open sharing (COS) signal to the master wireless transmitter, the high-power COS signal comprising an indication of a desired reduction of transmission power level from high power by the master wireless transmitter, and a timer initiated by the high-power COS signal, the timer to indicate a period of time when the master wireless transmitter and master wireless receiver are enabled for low-power communication.
Abstract:
Systems, methods, and devices for device-to-device (D2D) distributed scheduling are disclosed herein. User equipment (UE) is configured to measure a received power level for a reference signal received from a target UE and measure received power levels for reference signals received from one or more non-target UEs. The UE is configured to generate a resource usage map for the target UE and the one or more non-target UEs. The UE is configured to determine a priority, with respect to the target UE, for each resource element group based on the resource usage map and an anticipated signal-to-interference ratio (SIR). The UE is configured to transmit data to the target UE during one or more resource element groups with the highest priorities for the target UE.