Abstract:
Method for determining the influence of least a first and a second experimental parameter on a liquid chromatography protocol for purifying one or more target molecules from a sample, comprising the steps: - performing chromatography purifications of the sample at a plurality of different experimental conditions where at least the first and the second experimental parameter each are varied over a predetermined range, each purification being registered as a chromatogram by monitoring an output parameter indicative of the purification result during the purification; and - displaying in a graphical user interface at least a subset of the registered chromatograms as chromatogram-miniatures in an evaluation diagram wherein the position of each displayed chromatogram-miniature is determined by the experimental parameters for the corresponding purification, thereby allowing a user to visually determine trends and the influence of the experimental parameters on the liquid chromatography protocol.
Abstract:
The invention relates to a method and an apparatus for determining a chromatogram. The method includes a first step where a sample is inserted in two separation columns (2.1, 2.2, 2.3), wherein for each separation column (2.1, 2.2, 2.3), a corresponding part of the sample is inserted in the respective separation column (2. 1, 2.2, 2.3) with a corresponding insertion device (3. 1, 3.2, 3.3) which is controlled by a corresponding modulation function for generating a corresponding modulated part of the sample in the respective separation column (2. 1, 2.2, 2.3), wherein the modulation functions with which the parts of the sample are modulated in the separation columns (2. 1, 2.2, 2.3) differ from each other. Furthermore, the method includes a second step where each modulated part of the sample is guided through the respective separation column (2. 1, 2.2, 2.3), a third step where a signal of each modulated part of the sample is measured with a same detector (4) after having passed the respective separation column (2.1, 2.2, 2.3), and a fourth step where for each separation column (2. 1, 2.2, 2.3), a correlation of the signal and the modulation function with which the corresponding part of the sample is modulated in the respective separation column (2. 1, 2.2, 2.3) is calculated in order to determine the chromatogram of the respective separation column (2. 1, 2.2, 2.3).
Abstract:
Oral fluid for drug testing has several advantages over other specimens: (1) It may be collected noninvasively and under direct supervision; (2) its drug concentration reflects blood-drug concentrations; and (3) it can be processed by conventional drug screening and confirmation methods. This technology provides a system that measures the quantity of a drug (without needing a priori knowledge of the drug) in an oral fluid specimen and translates this level to a blood plasma drug concentration. The method first measures the concentration of a drug in an oral fluid sample. Next, a processor calculates the blood plasma concentration from the measured oral fluid drug concentration. Finally, this blood plasma drug level is utilized to calculate a total body drug concentration.
Abstract:
Exemplary embodiments of the present disclosure are directed to manipulating pressure-related hysteresis in a pressurized flow system by setting the pressure of the system to a predetermined location in the hysteresis band to advantageously minimize an effect of the pressure related hysteresis on the pressure of the system or to advantageously benefit from the effects of the hysteresis on the pressure of the system.
Abstract:
A system and method identifies data peaks representative of empirical data of a sample. The system and method assign a grammar type to correspond to data points represented on a data plot such as a chromatogram and identify the presence of a peak syntax based on an analysis of the grammar element types assigned to the data points of the chromatogram.
Abstract:
Vorrichtung zur Durchführung von Chromatographie, vorzugsweise von Flüssigkeits-Prozesschromatographie, insbesondere auf industriellem Gebiet, unter Verwendung jeweils wenigstens einer mit einem Antrieb versehenen Verdrängerpumpe zur Aufgabe von Produkt sowie Eluent (mobile Phase) in mindestens eine Trennsäule (1), wobei der Antrieb (10, 10', 11, 11') jeder Verdrängerpumpe (8, 8', 9, 9') ein hochdynamischer Antrieb ist, der zur Erfassung der Weg-/Zeitdaten mit einem integrierten Gebersystem ausgerüstet ist, die über eine angeschlossene übergeordnete Bewegungssteuerung/-regelung in entsprechende lagegeregelte Fahrbefehle umsetzbar sind.