Abstract:
Die vorliegende Erfindung betrifft eine integrierte Anlage, die eine Anlage zur elektrothernnischen Herstellung von Ethin und eine Trennvorrichtung zur Abtrennung von Ethin aus dem Reaktionsgemisch der elektrothermischen Herstellung von Ethin unter Erhalt mindestens eines Gasstroms enthaltend Wasserstoff und/oder Kohlenwasserstoffe umfasst, wobei die integrierte Anlage eine Vorrichtung zur Einleitung eines Gases in ein Erdgasnetz aufweist, der aus der Trennvorrichtung über mindestens eine Leitung ein Gasstrom enthaltend Wasserstoff und/oder Kohlenwasserstoffe zugeführt wird. Diese integrierte Anlage ermöglicht einen flexiblen Einsatz von Strom durch ein Verfahren, bei dem ein Gasstrom, enthaltend Wasserstoff und/oder Kohlenwasserstoffe, aus der Trennvorrichtung in ein Erdgasnetz eingespeist wird und in Abhängigkeit vom Stromangebot die Menge und/oder die Zusammensetzung des in das Erdgasnetz eingespeisten Gasstroms verändert werden.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
High efficiency processes for producing olefins, alkynes, and hydrogen co-production from light hydrocarbons are disclosed. In one version, the method includes the steps of combusting hydrogen and oxygen in a combustion zone of a pyrolytic reactor to create a combustion gas stream, transitioning a velocity of the combustion gas stream from subsonic to supersonic in an expansion zone of the pyrolytic reactor, injecting a light hydrocarbon into the supersonic combustion gas stream to create a mixed stream including the light hydrocarbon, transitioning the velocity of the mixed stream from supersonic to subsonic in a reaction zone of the pyrolytic reactor to produce acetylene, and catalytically hydrogenating the acetylene in a hydrogenation zone to produce ethylene. In certain embodiments, the carbon efficiency is improved using methanation techniques.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of solids from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of inorganic and organic solids in the hydrocarbon stream by use of adsorbent beds, filters, cyclone or gravity separators.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of mercury from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of mercury and mercury containing compounds in the hydrocarbon stream.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of nitrogen contaminants from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of amines in the hydrocarbon stream.
Abstract:
The invention relates to processes for converting hydrocarbons to phthalic acids such as terephthalic acid by conversion of a first mixture comprising hydrocarbons into a second mixture containing acetylene by pyrolysis, conversion of second mixture's acetylene to a third mixture comprising cyclooctatetraene and by conversion of third mixture's cyclooctatetraene to water and phthalic acids.
Abstract:
The present techniques provide a pyrolysis process that is reduced in coke and/or tar formation relative to comparable processes. A flushing fluid is applied or injected directly into a pyrolysis reactor to reduce high levels of coke and tar that can accumulate within the pyrolysis reactor during pyrolysis of the feed.