Abstract:
Systems, devices, and methods for adjusting functionality of an implantable medical device based on posture are disclosed. In some instances, a method for operating a leadless cardiac pacemaker implanted into a patient, where the patient has two or more predefined behavioral states, may include detecting a change in the behavioral state of the patient, and in response, changing a sampling rate of a sensor signal generated by a sensor of the leadless cardiac pacemaker. In some embodiments, the method may further include using the sampled sensor signal to determine an updated pacing rate of the leadless cardiac pacemaker and providing pacing to the patient at the updated pacing rate.
Abstract:
An energy efficient system is described for delivering electrostimulation to a patient's heart. The system may be configured to switch, in some cases dynamically, between a multi-site electrostimulation configuration and a single-site electrostimulation configuration for delivering electrostimulation to a single heart chamber (e.g. left ventricle) based upon one or more triggers and/or a predefined schedule to reduce the energy expenditure of the system while still providing the benefits of multi-site electrostimulation.
Abstract:
Systems and methods for providing rate responsive pacing therapy to a heart of a patient. One example method for providing rate responsive pacing therapy includes sensing cardiac electrical data with a leadless cardiac pacemaker (LCP) that is implanted within or proximate the heart. From this location, the LCP may provide pacing therapy to the heart based at least in part on the sensed cardiac electrical data. An implantable medical device located remotely from the heart may sense patient activity, and may wirelessly communicate patient activity data from the implantable medical device to the LCP, sometimes using conducted communication. The LCP may be then determine an adjustment to the provided pacing therapy (e.g. adjust the pacing rate) based at least in part on the received patient activity data signal.
Abstract:
Systems are provided for using stored physiologic information about a subject to detect a previous treatment event. Physiologic information can be sensed from a subject using one or more sensors. Using a detection circuit, a change in the sensed physiologic information, such as a change from reference physiologic information, can be used to identify a candidate previous treatment event. An alert or other information about the candidate treatment event can be provided to a patient or clinician. In an example, a candidate treatment event can include a heart failure or diuresis treatment that is identified using information about a change in one or more of a subject's circadian pattern, a subject's thoracic impedance, or a subject's respiration status.
Abstract:
Systems and methods for providing rate responsive pacing therapy to a heart of a patient. One example method for providing rate responsive pacing therapy includes sensing cardiac electrical data with a leadless cardiac pacemaker (LCP) that is implanted within or proximate the heart. From this location, the LCP may provide pacing therapy to the heart based at least in part on the sensed cardiac electrical data. An implantable medical device located remotely from the heart may sense patient activity, and may wirelessly communicate patient activity data from the implantable medical device to the LCP, sometimes using conducted communication. The LCP may be then determine an adjustment to the provided pacing therapy (e.g. adjust the pacing rate) based at least in part on the received patient activity data signal.
Abstract:
Some systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One method may include displaying a plurality of vectors on a display screen wherein each vector represents a different combination of three or more electro-stimulation electrodes, determining an electrical impedance for each of the plurality of vectors, displaying on the display screen the electrical impedance for each of the plurality of vectors, receiving a selection of a set of the plurality of vectors, determining, for each of the vectors in the set of vectors, a capture threshold, displaying on the display screen the capture threshold for each of the vectors in the set of vectors, receiving a selection of a vector from the set of vectors for delivery of electrical stimulation to the patient's heart, and programming the electro-stimulation device electrical stimulation to the patient's heart via the selected vector.
Abstract:
Apparatus, systems, and methods are provided for optimizing intracardiac filling pressures and cardiac output in patients with heart failure, conduction disease, and atrial fibrillation. The system is able to adjust and optimize intracardiac filling pressures and cardiac output by adjusting heart rate and the effective amount of total body blood volume. The device includes an adjustable member that may create a mean pressure differential in order to manifest an effective "mechanical diuresis" by sequestering extraneous blood volume to the high-capacitance of the venous vasculature. The system is therefore designed to reduce intracardiac filling pressures while maintaining or even increasing cardiac output.
Abstract:
An apparatus for treating a patient's heart includes a sensor for measuring hemodynamics of the heart. The apparatus includes a processing unit which receives the hemodynamics from the sensor and uses the hemodynamics to determine whether to shock the heart. A method for treating a patient's heart. The method includes the steps of measuring hemodynamics of the heart with a sensor. There is the step of receiving the hemodynamics from the sensor at a processing unit which uses the hemodynamics to determine whether to shock the heart.
Abstract:
Physiological data, such as thoracic impedance data, can be obtained over a first time window to establish a baseline, or can be used to form one or more data clusters. Additional physiological data, such as thoracic impedance test data acquired over a later time window, can be obtained and compared to the baseline or data clusters to determine an indication of worsening heart failure. In an example, a quantitative attribute of one or more data clusters can be monitored and used to provide an indication of worsening heart failure. A posture discrimination metric can be obtained, such as using the physiological data obtained over the first time window. The additional physiological data, such as can be obtained over a second time window, can be compared to the posture discrimination metric to provide a patient posture status.
Abstract:
Example techniques for communicating between two medical devices are described. One medical device may be an implantable medical device. Another medical device may be a lead-borne implantable medical device. The lead-borne implantable medical device may be referred to as a satellite. The implantable medical device may measure impedance of a path including at least two electrodes, at least one of which is on the lead, using an impedance measurement module. In some example implementations of this disclosure, the implantable medical device may also use the impedance measurement module to communicate with the satellite on the lead.