Abstract:
This document discusses, among other things, systems and methods to determine a blood pressure measurement of a subject, such as a systolic blood pressure of a subject, a diastolic blood pressure of the subject, or both, using received heart sound information and plethysmography information of the subject. The system can include a signal receiver circuit configured to receive the heart sound information and plethysmography information of the subject, and an assessment circuit configured to determine the systolic and diastolic blood pressure of the subject using the received heart sound information and the plethysmography information of the subject.
Abstract:
A veiitricularlv implantable medical device that includes a sensing module that is configured to gather information during a cardiac cycle and to identify a cardiac interval based at least on part on the gathered information. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified cardiac interval.
Abstract:
Embodiments include medical device systems, medical devices, including accelerometers and chemical sensors, and methods of using the same to determine the posture of a patient. In an embodiment, a medical device system herein includes an accelerometer configured to generate a signal reflecting a position of a patient, a chemical sensor configured to generate a signal reflecting physiological analyte data of the patient and a controller in electrical communication with the accelerometer and the chemical sensor. The controller can be configured to determine a posture of the patient using the position signal generated by the accelerometer and the signal generated by the chemical sensor. Other embodiments are also included herein.
Abstract:
Systems and methods for managing machine-generated alerts of a medical event such as worsening heart failure (WHF) are described. A patient management system includes a patient database of information about a correspondence between a plurality of alert thresholds (ATHs) and corresponding clinical outcome indicators (COIs) for a plurality of patients. A control circuit can query the patient database for a matching patient that meets specific query criteria compared to a target patient, retrieve an ATH-COI correspondence associated with the matching patient, and determine the alert threshold using a user input of a COI and the retrieved ATH-COI correspondence. A medical event detector detects the medical event using physiological signals sensed from the target patient and the determined alert threshold.
Abstract:
An interrogation system for a medical device includes a memory storing a diagnostic algorithm, a processor configured to run the diagnostic algorithm, and a communication module configured to facilitate data transfer between the interrogation system and the medical device. The diagnostic algorithm is configured to reach a diagnostic conclusion based on data from the medical device. The diagnostic algorithm is configured to iteratively interrogate the medical device for the data from the medical device until the diagnostic algorithm reaches the diagnostic conclusion, each iterative interrogation requesting additional data as compared to prior iterations. The communication module is configured to receive the additional data from the medical device in response to each iterative interrogation. The diagnostic algorithm is further configured to store an indication of the diagnostic conclusion within the memory.
Abstract:
Embodiments herein include implantable medical systems, devices and methods including chemical sensors. In an embodiment, an implantable medical device system includes a chemical sensor; a fluid state sensor such as a posture sensor; an activity sensor; and/or a respiration sensor. The implantable medical device system can further include normalization circuitry receiving data from the chemical sensor and the fluid state sensor and normalizing the chemical sensor data based on data from the fluid state sensor. In an embodiment, a method of operating an implantable medical device system is included. The method can include measuring the amount of a chemical analyte using a chemical sensor, measuring the fluid status in a patient using a fluid state sensor, and normalizing the measured amount of the chemical analyte as indicated by the chemical sensor using normalization circuitry based on data from the fluid state sensor. Other embodiments are also included herein.
Abstract:
System and methods for energy adaptive communications between medical devices are disclosed. In one example, a medical device includes a communication module configured to deliver a plurality of pulses to tissue of a patient, where each pulse has an amount of energy. A control module operatively coupled to the communication module, may be configured to, for each delivered pulse, determine whether the delivered pulse produces an unwanted stimulation of the patient and to change the amount of energy of the plurality of pulses over time so as to identify an amount of energy that corresponds to an unwanted stimulation threshold for the pulses. The control module may then set a maximum energy value for communication pulses that is below the unwanted stimulation threshold, and may deliver communication pulses below the maximum energy value during communication with another medical device.
Abstract:
A cardiac rhythm management system includes a first implantable device such as a defibrillator and a second implantable device such as a leadless cardiac pacemaker. A programmer is configured to receive and display heart data emanating from the implantable defibrillator and from the leadless cardiac pacemaker. The heart data emanating from the leadless cardiac pacemaker is displayed in temporal alignment with the heart data emanating from the implantable defibrillator.
Abstract:
Systems and methods for communicating between medical devices. In one example, a method for communicating between a plurality of medical devices in a medical device system comprises, with a first medical device, communicating a first message to a second medical device. The method further comprises, with the second medical device, receiving the first message, wherein the first message comprises a plurality of communication pulses. A first set of the plurality of communication pulses represent a synchronization portion of the first message. A second set of the plurality of communication pulses represent a relative device address portion of the first message. A third set of the plurality of communication pulses represent a command portion of the first message. A fourth set of the plurality of communication pulses represent a payload portion of the first message.
Abstract:
Systems and methods for communicating between medical devices. In one example, an implantable medical device comprises a communication module configured to receive commands from other medical devices, wherein the commands include a relative address and a command payload; a memory unit that stores a relative address and a unique identifier of the implantable medical device; a processing module coupled to the communication module and the memory unit, the processing module configured to: determine whether the relative address of a received command matches the relative address stored in the memory unit of the implantable medical device; if the relative address of the received command matches the relative address stored in the memory unit of the implantable medical device, execute the received command; and if the relative address of the received command does not match the relative address stored in the memory unit of the implantable medical device, ignore the received command.