Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes heat management in the process for further converting the acetylene stream to form a subsequent hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream can be used to transfer heat to process streams used in downstream process units, and in particular streams that are fed to endothermic reactors.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von ungesättigten Kohlenwasserstoffen mit zwei Kohlenstoffen, insbesondere von Acetylen und/oder Ethylen, aufweisend die Schritte: Erzeugen eines Verbrennungsgases (V) an einem in einem Reaktor (100) angeordneten Festkörperelement (101), Vermischen jenes Verbrennungsgases (V) mit im Reaktor (100) befindlichem Methan zur Erzeugung von Acetylen, und gegebenenfalls die Schritte: Abkühlen des Acetylens und Hydrieren von Acetylen zu Ethylen.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of water, carbon dioxide and other condensable contaminants in the hydrocarbon stream by use of a fluid separation assembly such as a supersonic inertia separator. In addition, one or more adsorbent beds may be used to remove remaining trace amounts of condensable contaminants. The fluid separation assembly has a cyclonic fluid separator with a tubular throat portion arranged between a converging fluid inlet section and a diverging fluid outlet section and a swirl creating device.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of mercury containing compounds from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of organic, ionic or suspended mercury compounds by first converting these compounds to elemental mercury or to inorganic mercury compounds and then removing them by use of an adsorbent bed.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of water from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of water in the hydrocarbon stream.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of nitrogen from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of nitrogen in the hydrocarbon stream.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of sulfur containing compounds from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of sulfur containing compounds in the hydrocarbon stream.
Abstract:
Горелка для получения ацетилена методом термоокислительного пиролиза метана, содержит блочное газораспределительное устройство с каналами для подачи газовой смеси и каналами для подачи стабилизирующего кислорода, соединёнными с коллектором подачи стабилизирующего кислорода. Новым в изобретении является то, что газораспределительное устройство выполнено в виде совокупно направляющего газораспределительного моноблока с цельно выфрезированными в нём каналами для подачи газовой смеси, стабилизирующего кислорода и коллектора подачи стабилизирующего кислорода. Верхняя часть газораспределительного моноблока выполнена в виде конуса с образующей, имеющей форму циклоиды (брахистохроны); а входы в газовые каналы выполнены в форме плавно сужающихся участков с переходом от трапециодального сечения в трапециодальное с углом сужения а = 40-60°. Технический результат предлагаемого изобретения заключается в существенном увеличении ресурса работы горелки и её производительности.
Abstract:
Disclosed is a multi-stage plasma reactor for cracking carbonaceous material comprising: first stage of reaction tube mainly for mixing of the carbonaceous material, carrier gas with first heating gas and pyrolysis of the carbonaceous material; second stage-N stage of reaction tube mainly for gas phase reaction of volatiles resulted from the pyrolysis, wherein N is integer of more than or equal to 2; at least one inlet of the carbonaceous material and carrier gas as feedstock located on top of the first stage of reaction tube; at least one inlet of first heating gas located on side surface of the first stage of reaction tube; at least one inlets of second-N heating gases located on side surface of the second stage-N stage of reaction tube respectively, wherein said second-N heating gases are plasma high temperature gases; at least one inlet of quench media for quenching or freezing of reaction products; at least one outlet of quenched products and gases located on bottom or lower portion of last stage of reaction tube.