Abstract:
The present invention relates to the field of stem cell biology, in particular the linage specific differentiation of pluripotent or multipotent stem cells, which can include, but is not limited to, human embryonic stem cells (hESC), human induced pluripotent stem cells (hiPSC), somatic stem cells, cancer stem cells, or any other cell capable of lineage specific differentiation. Specifically described are methods to direct the lineage specific differentiation of hESC and/or hiPSC to nociceptors (i.e. nociceptor cells) using novel culture conditions. The nociceptors made using the methods of the present invention are further contemplated for various uses including, but limited to, use in in vitro drug discovery assays, pain research, and as a therapeutic to reverse disease of, or damage to, the peripheral nervous system (PNS). Further, compositions and methods are provided for producing melanocytes from human pluripotent stem cells for use in disease modeling.
Abstract:
The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce cells expressing markers characteristic of the pancreatic endocrine lineage that co-express NKX6.1 and insulin and minimal amounts of glucagon.
Abstract:
A transcription factor both necessary and sufficient for human neuroectoderm specification, Pax6, as well as applications thereof, is disclosed.
Abstract:
Methods are provided for producing cells within a lineage (lineage restricted cells) from post-mitotic differentiated cells of the same lineage ex vivo and in vivo, and for treating a subject in need of tissue regeneration therapy by employing these lineage-restricted cells. In addition, the production of lineage restricted cells from postmitotic tissues derived from patients with diseases allows for a characterization of pathways that have gone awry in these diseases and for screening of drugs that will ameliorate or correct the defects as a means of novel drug discovery. Also provided are kits for performing these methods.
Abstract:
Methods and compositions are provided for, inter alia , the generation of induced pluripotent stem cells. Induced pluripotent stem cells may be generated by reprogramming and inhibition of p53. Further, useful intermediates for the generation of induced pluripotent stem cells are also provided.
Abstract:
Disclosed herein are methods for controlling stem cell differentiation through the introduction of transgenes having Xic, Tsix, or Xite sequences to block differentiation and the removal of the transgenes to allow differentiation. Also disclosed are small RNA molecules and methods for using the small RNA molecules to control stem cell differentiation. Also disclosed are stem cells genetically modified by the introduction of Xic, Tsix, or Xite sequences.
Abstract:
The invention relates to a method for propagating or concentrating primary cells without tumorous characteristics and to the subsequent use thereof.
Abstract:
Disclosed herein are methods for controlling stem cell differentiation through the introduction of transgenes having Xic, Tsix, Xite, or Xic flanking region sequences to block differentiation and the removal of the transgenes to allow differentiation. Also disclosed are small RNA molecules and methods for using the small RNA molecules to control stem cell differentiation. Also disclosed are stem cells genetically modified by the introduction of Xic, Tsix, XUe, or Xic flanking region sequences.
Abstract:
The present application provides methods and devices for the production and recovery of cell aggregates. In one embodiment, the device is a microwell device with a high density of microwells. The application also provides a device for extracting cell aggregates such as stem cells or embryoid bodies from well plates. Such cell aggregates are used for the differentiation of pluripotent stem cells such as embryonic stem cells, in the fields of developmental biology and regenerative medicine / tissue engineering.