Abstract:
A protein scaffold based on a consensus sequence of fibronectin type III (FN3) proteins, such as the tenth FN3 repeat from human fibronectin (human Tenascin), including isolated nucleic acids that encode a protein scaffold, vectors, host cells, and methods of making and using thereof. The protein scaffold molecules of the present invention exhibit enhanced thermal and chemical stability while presenting six modifiable loop domains which can be engineered to form a binding partner capable of binding to a target for applications in diagnostic and/or therapeutic compositions, methods and devices.
Abstract:
Disclosed are insulin-like growth factor 1 receptor binding polypeptides, and the polynucleotides encoding the polypeptide. Disclosed are also methods of producing the polypeptides using cell expression systems and cell free systems, and methods of using the polypeptides for fusion protein production. The polypeptides disclosed can provide means for delivering therapeutic agents across the blood-brain barrier (BBB).
Abstract:
The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells expressing markers characteristic of the pancreatic endoderm lineage, wherein greater than 50% of the cells in the population co-express PDX1 and NKX6.1.
Abstract:
The present invention relates to the field of mammalian cell culture, and provides methods and compositions for cell attachment to, cultivation on and detachment from a solid substrate surface containing from at least about 0.5% N, a sum of O and N of greater than or equal to 17.2% and a contact angle of at least about 13.9 degrees, lacking a feeder cell layer and lacking an adlayer. In one embodiment of the present invention, the cells are treated with a compound capable of inhibiting Rho kinase activity. In another embodiment, the cells are treated with a compound capable of inhibiting Rho activity.
Abstract:
The present invention is directed to methods to differentiate pluripotent stem cells. In particular, the present invention provides methods of characterization of cells differentiated into cells expressing markers characteristic of the pancreatic endocrine lineage utilizing unique surface markers. The present invention also provides methods to enrich or sort cells expressing markers characteristic of the pancreatic endocrine lineage. The present invention also provides methods to deplete cells that may contaminate populations of cells expressing markers characteristic of the pancreatic endocrine lineage formed by the methods of the present invention, thereby reducing the incidence of tumor formation in vivo following transplantation.
Abstract:
Antibody and other Fc-containing molecules with variations in the Fc region reduce binding to Fc gamma receptors and resulting activity and can be used in the treatment of various diseases and disorders.
Abstract:
The present invention provides methods to produce pluripotent stem cells from adult cells. In particular, the present invention provides methods to produce pluripotent stem cells from somatic cells without the use of a feeder-cell layer or an agent that increases efficiency of retroviral transfection.
Abstract:
Interleukin-17A (IL-17A) antibody antagonists, polynucleotides encoding IL-17A antibody antagonists or fragments thereof, and methods of making and using the foregoing are disclosed.
Abstract:
The present invention provides methods to promote the differentiation of pluripotent stem cells into cells expressing markers characteristic of the pancreatic endocrine lineage that co-express PDX1, NKX6.1, but do not express CDX2 and NGN3.
Abstract:
Disclosed is a device for the parenteral delivery of a medication, such as a drug. The device includes upper and lower housings in which the upper housing is configured to move relative to the lower housing as a result of application of an external force to permit the user of the device to control the rate at which the drug is administered.