Abstract:
Nanoparticles, methods of manufacture, devices comprising the nanoparticles, methods of their manufacture, and methods of their use are provided herein. The nanoparticles and devices having photoabsorptions in the range of 1.7 µm to 12 µm and can be used as photoconductors, photodiodes, phototransistors, charge-coupled devices (CCD), luminescent probes, lasers, thermal imagers, night-vision systems, and/or photodetectors.
Abstract:
Compounds, methods and devices for detecting incident radiation, such as incident x-rays or gamma-rays, are provided. The detection of incident radiation can be accomplished by employing inorganic compounds that include elements with high atomic numbers, that have band gaps of at least about 1.5 eV, and that have an electrical resistivity of at least 106 Ocm as photoelectric materials in a radiation detector. The compounds include inorganic compounds comprising at least one element from periods five or six of the Periodic Table of the Elements.
Abstract:
The invention relates to a light mixer for generating terahertz radiation, comprising a photodetector (PHD) coupled to an antenna (AT) for terahertz radiation, characterized in that the photodetector comprises a layer of photoconductive material capable of absorbing optical radiation, said layer having a thickness that is less than the absorption length of said radiation by the photoconductive material and being contained between an at least partially transparent so-called upper electrode and a reflective so-called lower electrode, said lower and upper electrodes comprising a resonant cavity for said optical radiation. The invention further relates to a terahertz radiation source comprising such a light mixer and to two laser radiation sources arranged to stack two laser radiation beams on the upper electrode of the photodetector. The invention also relates to the use of such a light mixer for generating terahertz radiation via light mixing.
Abstract:
A directive optical device includes an optically active material which may be a light emitting material or a light collecting material. A partially reflective grating is disposed proximate to the optically active material.
Abstract:
Disclosed is a silicon photomultiplier which comprises: a plurality of micro pixels which include p conductive-type epitaxial layers and PN-bonding layers formed inside the epitaxial layers; trench electrodes which are arranged around the micro pixels; and a substrate, which is opened to allow outside light to be incident, on which the micro pixels and the trench electrodes are settled at the same time. Central shafts of longitudinal sections of said PN-bonding layers are formed to be vertical to the epitaxial layers.
Abstract:
Embodiments of the invention are directed to an improved device for sensing infrared (IR) radiation with upconversion to provide an output of electromagnetic radiation having a shorter wavelength than the incident IR radiation, such as visible light. The device comprises an anode, a hole blocking layer to separate an IR sensing layer from the anode, an organic light emitting layer that is separated from the anode by the IR sensing layer, and a cathode. The hole blocking layer assures that when a potential is applied between the anode and the cathode the organic light emitting layer generates electromagnetic radiation only when the IR sensing layer is irradiated with IR radiation.
Abstract:
Embodiments of the invention are directed to an improved device for sensing infrared (IR) radiation with upconversion to provide an output of electromagnetic radiation having a shorter wavelength than the incident IR radiation, such as visible light. The device comprises an anode, a hole blocking layer to separate an IR sensing layer from the anode, an organic light emitting layer that is separated from the anode by the IR sensing layer, and a cathode. The hole blocking layer assures that when a potential is applied between the anode and the cathode the organic light emitting layer generates electromagnetic radiation only when the IR sensing layer is irradiated with IR radiation.
Abstract:
A scalable vacuum photosensor configured to simplify mass production with a housing having an evacuated first side at an ultrahigh vacuum and a second side which does not require high vacuum. The first side of the device is sealed to a base plate, having a central electron readout element, using an oxide-free sealing technique, with the deposited sealing areas serving as high voltage throughputs from the first to second sides. A conductive photocathode layer on the transparent first side converts photons to photoelectrons and concentrates the photoelectrons upon the readout. The first and second sides together form an electrostatic lens for accelerating and focusing photoelectrons upon the readout, preferably having a scintillator which generates secondary light measured by an optical detector in the second side of the housing.