Abstract:
A teacher-controlled learning environment is disclosed that allows for remotely-located students to view 3D manipulation of objects associated with a lesson. Teacher-controlled viewing of 3D content (particularly relevant for STEM applications) is enabled across multiple devices that are networked via a specific platform, allowing for remote manipulation of 3D objects (as controlled by the teacher/host), where the student wears stereoscopic 3D glasses and the teacher's remote software "takes over" the student's device to provide the actual 3D object manipulation.
Abstract:
A computer mouse for providing commands to create both two-dimensional (2D) and three-dimensional (3D) movements and manipulations of objects as projected on a 3D display. The computer mouse comprises an input device including conventional button/wheel and trackball controllers and a mode switch for toggling between 2D operation and 3D operation. The computer mouse also includes an external processor responsive to the command signals and mode signal from the input device, and functions to translate the received signals into cursor actions on an associated 3D display.
Abstract:
An apparatus providing mechanical-to-electrical energy conversion generates electrical current by moving a conductive fluid in the presence of magnetic field. The motion of the fluid is induced by a mechanical energy source and the generated electrical current is directed to a useful load. The proposed apparatus utilizes a conductive fluid as a "liquid rotor" has substantially different radial velocity distribution than the conventional, prior art solid rotor. The apparatus includes an inverter, controlled by the flow of the conductive fluid, to generate a train of pulses as an output, where the pulses are used by an associated transformer to provide an AC output voltage.
Abstract:
A housing used for electronic devices includes a structural frame element formed of a metal matrix composite (MMC) for providing improved stiffness over other materials currency in use. The MMC is a metal matrix (formed of a material such as aluminum), with a reinforcing material (such as a glass fiber or ceramic) dispersed within the metal matrix. The composition of the reinforcing material, as well as the ratio of reinforcing material to metal, define the stiffness (resistance to bending) and/or strength (resistance to breaking) achieved, and various compositions may be used for different housings, depending on the use of the electronic device. The element may be configured as a structural frame member, or may be embedded within another material forming the structural frame element. In another embodiment, the MMC may be used to form various components of the complete housing, including the enclosure itself.
Abstract:
A fiber-based optical amplifier is assembled in a compact configuration by utilizing a flexible substrate to support the amplifying fiber as flat coils that are "spun" onto the substrate. The supporting structure for the amplifying fiber is configured to define the minimal acceptable bend radius for the fiber, as well as the maximum diameter that fits within the overall dimensions of the amplifier package. A pressure-sensitive adhesive coating is applied to the flexible substrate to hold the fiber in place. By using a flexible material with an acceptable insulative quality (such as a polyimide), further compactness in the final assembly is achieved by 1 ocating the electronics in a space underneath the fiber enclosure.
Abstract:
A densely -spaced single-emitter laser diode configuration is created by using a laser bar (or similar array configuration) attached to a submount component of a size sufficient to adequately support the enter laser structure. The surface of the submount component upon which the laser structure is attached is metallized and used to form the individual electrical contacts to the laser diodes within the integrated laser structure. Once attached to each other, the laser structure is singulated by creating vertical separations between adjacent light emission areas. The submount metallization is similarly segmented, creating separate electrodes that are used to individually energize their associated laser diodes.
Abstract:
AC LED light engines powered directly from the AC power line contain circuitry of resistors, capacitors, diodes and transistors which enables a single string LEDs connected to series to efficiently produce light with a relatively low level of flicker as perceived by the human eye. The LEDs are driven by a current which is alternately capacitively-limited and resistively-Iimited. Capacitively-limited pulses of current are interposed between resistively-Iimited pulses of current so that the resulting output current ripple is at frequencies of 240 Hz or above which the human eye cannot perceive. The combination of resistively-Iimited current and capacitively-limited current results in a current drain from the power line which is generally sinusoidal and can have a power factor in excess of 0.70.
Abstract:
A stand-alone, rigid lacrosse pocket is formed from a piece of mesh netting that is shaped to exhibit a desired pocket contour. Once shaped, a coating of stiffening material is applied to the netting and embeds within the shaped mesh netting to "fix" the desired pocket contour and form a rigid lacrosse pocket. The rigid lacrosse pocket is thereafter attached to a conventional lacrosse head, using the same stringing technique as commonly used to attach the mesh netting to the head. Advantageously, by pre -fabricating the lacrosse pocket, the need to "work" the netting into the desired shape is eliminated, and a player can quickly and easily change pockets as necessary. A method of fabricating the stand-along, rigid lacrosse pocket is also disclosed.
Abstract:
An in-line polarization extinction ratio (PER) monitor that generates a value of an optical signal's PER from a single measurement, without requiring the optical transmission signal path of the system to be directly coupled into a separate measurement device. The polarization extinction ratio may be defined as: 1010g(P Ex /P Ey ), where P Ex is the power of the optical signal propagating along the "x axis" and P Ey is the power propagating along the orthogonal "y axis" (with the z-axis defined as a longitudinal optical axis of the system and the x-y plane orthogonal to this direction of propagation). The PER monitor comprises a section of optical fiber (preferably birefringent or with induced birefringency), with a pair of gratings formed along the fiber and oriented to out-couple orthogonal components of the propagating signal. Photodetectors are used to convert the scattered light into electrical signal equivalents and then processed to yield the PER value.
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a "platform" (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.