Abstract:
Some embodiments are directed to an unmanned vehicle for transmitting signals. The unmanned vehicle includes a transmitting unit that is configured to transmit a signal towards an object. The unmanned vehicle also includes a control unit that is in communication with at least one companion unmanned vehicle. The control unit is configured to determine a position of the at least one companion unmanned vehicle relative to the unmanned vehicle. The control unit is further configured to control the transmitting element based on at least the position of the at least one unmanned vehicle such that the transmitting element forms a phased-array transmitter with a transmitting element of the at least one companion unnamed vehicle, the phased-array transmitter emitting a transmission beam in a predetermined direction.
Abstract:
The present invention relates generally to materials and methods for detection of bacteria, and for testing and determination of antibiotic susceptibility of bacteria in specimens of bodily fluid and other samples. The invention also relates to materials and methods for monitoring the physiological response of bacteria to antimicrobial agents, and for reducing backround and increasing sensitivity of assays that involve the detection and/or measurement of RNA, such as rRNA.
Abstract:
An unmanned vehicle for use with an entity physically spaced from the unmanned vehicle, the unmanned vehicle having objective parameters corresponding to controlled parameters of the entity. The unmanned vehicle comprises a transceiver that is configured to wirelessly receive an input signal from the entity, wherein the input signal is indicative of the controlled parameters of the entity. The unmanned vehicle further comprises a Phase-Locked Loop (PLL) circuit that is configured to generate a command signal based on a phase of the input signal and a phase of a reference signal, wherein the reference signal is indicative of the objective parameters of the unmanned vehicle. The transceiver is further configured to wirelessly transmit the command signal to the entity such that the entity controls the controlled parameters of the entity based on the command signal.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
Abstract:
A method of producing carbon nanofibers is disclosed that substantially impacts the carbon nanofibers' chemical and physical properties. Such carbon nanofibers include a semi-graphitic carbon material characterized by wavy graphite planes ranging from 0.1 nm to 1 nm and oriented parallel to an axis of a respective carbon nanofiber, the semi-graphitic carbon material also being characterized by an inclusion of 4 to 10 atomic percent of nitrogen heteroatoms, the nitrogen heteroatoms including a combined percentage of quaternary and pyridinic nitrogen groups equal to or greater than 60% of the nitrogen heteroatoms. The method of manufacture includes, for example, preparing a Polyacrylonitrile (PAN) based precursor solution, providing the PAN-based precursor solution to a spinneret and then performing an electro-spinning operation on the PANbased precursor solution to create the one or more PAN-based nanofibers.
Abstract:
A novel quantum-based computational process for drug discovery and design was used to identify potential novel liver-stage anti-malarial therapeutic molecules. The approach combined the latest big-data advances in high-throughput bioassay development with fundamental scientific knowledge to generate new pharmaceutical leads. Several indoloquinolines molecules, including nicergoline and structurally related molecules, with no previous association with anti- parasitical activity were identified. These molecules and there use in prevention and/or treatment of Trypanosoma infections are provided.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a location unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a path planning unit that generates a planned path. The unmanned vehicle receives a planned path of the companion unmanned vehicle and a current position of the companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a relative position between the unmanned vehicle and the companion unmanned vehicle based on at least the planned paths and the current positions of the unmanned vehicle and the companion unmanned vehicle. The unmanned vehicle also includes a control unit that is configured to control a movement of the unmanned vehicle based on at least the relative position between the unmanned vehicle and the companion unmanned vehicle.
Abstract:
The disclosed subject matter relates to methods and apparatus facilitating assessments of structural and electronic features, parameters, characteristics or any combination thereof using one or more unmanned autonomous vehicles. In some embodiments, an unmanned vehicle may be configured to monitor one or both of the structural and electrical characteristics of an object, and can also include cooperative behavior between two or more unmanned vehicles to test electrical communication in a directional fashion.
Abstract:
Some embodiments are directed to a system for use with a vehicle, the system including control circuits for controlling an operation of the vehicle, each of the control circuits implementing autopilot coefficients. The system further includes a sensor that is configured to detect control circuits operating in an untuned or incorrectly tuned state from the control circuits; an electronic switch that is configured to isolate the control circuits in the untuned or incorrectly tuned state from other control circuits; a tuning circuit that is configured to determine tuned values of the autopilot coefficients corresponding to the control circuits in the untuned or incorrectly tuned state; the tuned values of the autopilot coefficients enabling the control circuits to operate in a tuned state; and a memory to store the tuned values of the autopilot coefficients, wherein the electronic switch is further configured to connect the control circuits in the tuned state to the other control circuits.
Abstract:
The present invention relates generally to materials and methods for detection of bacteria, and for testing and determination of antibiotic susceptibility of bacteria in specimens of bodily fluid and other samples. The invention also relates to materials and methods for monitoring the physiological response of bacteria to antimicrobial agents, and for reducing background and increasing sensitivity of assays that involve the detection and/or measurement of RNA, such as rRNA. The invention provides kits comprising an RNase packaged for use in the methods described herein.