Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
Abstract:
A wireless optical communication receiver is provided. The optical receiver includes an arrangement of wavelength shifting fibres preferably encased within a protective shroud. The wavelength shifting fibres provide an efficient method for capturing photons of light that strike them. Photons may strike the fibres as they first pass through a clear lens in the shroud or may strike the fibres after they are concentrated and focused by an embedded ring or hyperbolic mirror. The wireless optical receiver may be attached to a mobile vehicle in order to facilitate teleoperation of that vehicle.
Abstract:
Device for optically scanning and measuring an environment, said device being configured to be mobile and being provided with a laser scanner (10) or the like, which creates 3D-scans, and an autonomously moving robot (2), on which a laser scanner (10) or the like is mounted.
Abstract:
An unmanned autonomous vehicle, UAV, for inspection of fluid transportation means (FTM), said unmanned autonomous vehicle (1) comprising a navigation system (2) adapted to localize automatically said fluid transportation means (FTM) and to navigate said unmanned autonomous vehicle (l) along said fluid transportation means (FTM) for its inspection.
Abstract:
Techniques are provided for discovery and monitoring of an environment using a plurality of robots. A plurality of robots navigate an environment by determining a navigation buffer for each of the robots; and allowing each of the robots to navigate within the environment while maintaining a substantially minimum distance from other robots, wherein the substantially minimum distance corresponds to the navigation buffer, and wherein a size of each of the navigation buffers is reduced over time based on a percentage of the environment that remains to be navigated. The robots can also navigate an environment by obtaining a discretization of the environment to a plurality of discrete regions; and determining a next unvisited discrete region for one of the plurality of robots to explore in the exemplary environment using a breadth-first search. The plurality of discrete regions can be, for example, a plurality of real or virtual tiles.
Abstract:
A system is provided for processing container-grown plants positioned in a given area. The system includes a processing station positioned in the area for processing the container-grown plants. It also includes one or more autonomous mobile container handling robots configured to: (i) travel to a source location in the area and pick up a container-grown plant, (ii) transport the container-grown plant to the processing station where a process is performed on the container-grown plant, (iii) transport the container- grown plant from the processing station to a destination location in the area, (iv) deposit the container-grown plant at the destination location, and (v) repeat (i) through (iv) for a set of container-grown plants in the source location.
Abstract:
The present teachings provide a method of controlling a remote vehicle having an end effector and an image sensing device. The method includes obtaining an image of an object with the image sensing device, determining a ray from a focal point of the image to the object based on the obtained image, positioning the end effector of the remote vehicle to align with the determined ray, and moving the end effector along the determined ray to approach the object.