Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle can include a satellite navigation unit that is configured to receive a satellite signal indicative of a current position of the unmanned vehicle. The unmanned vehicle can also include an inertial navigation unit that is configured to determine the current position of the unmanned vehicle. The unmanned vehicle can also include a control unit disposed in communication with the satellite navigation unit and the inertial navigation unit. The control unit is configured to determine a planned position of the unmanned vehicle based on the planned path, compare the current position determined by the inertial navigation unit with the planned position based on the planned path, and control the movement of the unmanned vehicle based on at least the comparison between the current position and the planned position.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle can include a satellite navigation unit that is configured to receive a satellite signal indicative of a current position of the unmanned vehicle. The unmanned vehicle can also include an inertial navigation unit that is configured to determine the current position of the unmanned vehicle. The unmanned vehicle can also include a control unit disposed in communication with the satellite navigation unit and the inertial navigation unit. The control unit is configured to determine a planned position of the unmanned vehicle based on the planned path, compare the current position determined by the inertial navigation unit with the planned position based on the planned path, and control the movement of the unmanned vehicle based on at least the comparison between the current position and the planned position.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a location unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a path planning unit that generates a planned path. The unmanned vehicle receives a planned path of the companion unmanned vehicle and a current position of the companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a relative position between the unmanned vehicle and the companion unmanned vehicle based on at least the planned paths and the current positions of the unmanned vehicle and the companion unmanned vehicle. The unmanned vehicle also includes a control unit that is configured to control a movement of the unmanned vehicle based on at least the relative position between the unmanned vehicle and the companion unmanned vehicle.
Abstract:
Some embodiments are directed to a system for use with a vehicle, the system including control circuits for controlling an operation of the vehicle, each of the control circuits implementing autopilot coefficients. The system further includes a sensor that is configured to detect control circuits operating in an untuned or incorrectly tuned state from the control circuits; an electronic switch that is configured to isolate the control circuits in the untuned or incorrectly tuned state from other control circuits; a tuning circuit that is configured to determine tuned values of the autopilot coefficients corresponding to the control circuits in the untuned or incorrectly tuned state; the tuned values of the autopilot coefficients enabling the control circuits to operate in a tuned state; and a memory to store the tuned values of the autopilot coefficients, wherein the electronic switch is further configured to connect the control circuits in the tuned state to the other control circuits.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a location unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a path planning unit that generates a planned path. The unmanned vehicle receives a planned path of the companion unmanned vehicle and a current position of the companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a relative position between the unmanned vehicle and the companion unmanned vehicle based on at least the planned paths and the current positions of the unmanned vehicle and the companion unmanned vehicle. The unmanned vehicle also includes a control unit that is configured to control a movement of the unmanned vehicle based on at least the relative position between the unmanned vehicle and the companion unmanned vehicle.
Abstract:
Some embodiments are directed to a system for use with a vehicle, the system including control circuits for controlling an operation of the vehicle, each of the control circuits implementing autopilot coefficients. The system further includes a sensor that is configured to detect control circuits operating in an untuned or incorrectly tuned state from the control circuits; an electronic switch that is configured to isolate the control circuits in the untuned or incorrectly tuned state from other control circuits; a tuning circuit that is configured to determine tuned values of the autopilot coefficients corresponding to the control circuits in the untuned or incorrectly tuned state; the tuned values of the autopilot coefficients enabling the control circuits to operate in a tuned state; and a memory to store the tuned values of the autopilot coefficients, wherein the electronic switch is further configured to connect the control circuits in the tuned state to the other control circuits.
Abstract:
Some embodiments are directed to an unmanned vehicle. The unmanned vehicle can include a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle can also include a position unit that is configured to determine a current position of the unmanned vehicle, the position unit further configured to determine a planned position of the unmanned vehicle based on the planned path data stored in the memory unit. The unmanned vehicle can further include a control unit disposed in communication with the position unit, the control unit configured to determine a deviation based on the planned position and the current position of the unmanned vehicle, and control a movement of the unmanned vehicle such that the unmanned vehicle moves along the planned path if the deviation is less than a predetermined threshold.