Abstract:
Systems and methods are provided for controlling an amount of torque generated by an engine of a vehicle. The amount of torque may be controlled by limiting an amount of fuel or air or a combination thereof being provided to the engine. In some situations, controlling the amount of torque generated by the engine may be utilized to gradually limit the vehicle's acceleration, which in turn, may influence driver shifting strategies.
Abstract:
Methods of controlling a camless engine to prevent interference between engine valves and engine valves and pistons. The methods utilize one or more safe trajectories for the valves versus engine crankshaft angle. In normal operation, an engine valve control system monitors crankshaft angle and controls the engine valve so as to stay on the safe side trajectory. In the event the actual valve motion deviates excessively from the intended trajectory so as to reach or cross the safe trajectory, preventive action is taken, typically to command the engine valve to close. Safe trajectories may be stored in lookup tables, in equation form or both. In some cases a single safe trajectory for a valve may be sufficient, through in other cases, safe trajectories as a function of some engine operating conditions and environmental conditions, and in some cases may include crankshaft acceleration. Various embodiments are disclosed.
Abstract:
Hydraulic engine valve actuation methods for internal combustion engines having improved energy efficiency. In hydraulic engine valve operating systems using spring returns (22) for valve closure (20), the spring force is a minimum when the valve is closed and a maximum at the maximum lift. The present invention takes advantage of this difference by using a valve opening hydraulic force which is greater than the spring force when the valve is closed and less than the spring force when the valve is open at its maximum lift. The valve actuator is controlled to allow the valve, when opening, to overshoot the equilibrium condition. During the overshoot, the hydraulic actuator backfills with actuating fluid at it normal actuating pressure. When the valve velocity decays to zero or near zero, the flow of hydraulic fluid to (and from) the valve actuator may be cut off, capturing the valve substantially at the overshoot position.
Abstract:
Systems and methods are provided for controlling an amount of torque generated by an engine of a vehicle. The amount of torque may be controlled by limiting an amount of fuel or air or a combination thereof being provided to the engine. In some situations, controlling the amount of torque generated by the engine may be utilized to gradually limit the vehicle's acceleration, which in turn, may influence driver shifting strategies.
Abstract:
Methods of controlling a camless engine to prevent interference between engine valves and engine valves and pistons. The methods utilize one or more safe trajectories for the valves versus engine crankshaft angle. In normal operation, an engine valve control system monitors crankshaft angle and controls the engine valve so as to stay on the safe side trajectory. In the event the actual valve motion deviates excessively from the intended trajectory so as to reach or cross the safe trajectory, preventive action is taken, typically to command the engine valve to close. Safe trajectories may be stored in lookup tables, in equation form or both. In some cases a single safe trajectory for a valve may be sufficient, through in other cases, safe trajectories as a function of some engine operating conditions and environmental conditions, and in some cases may include crankshaft acceleration. Various embodiments are disclosed.
Abstract:
Hydraulic engine valve actuation methods for internal combustion engines having improved energy efficiency. In hydraulic engine valve operating systems using spring returns for valve closure, the spring force is a minimum when the valve is closed and a maximum at the maximum lift. The present invention takes advantage of this difference by using a valve opening hydraulic force which is greater than the spring force when the valve is closed and less than the spring force when the valve is open at its maximum lift. The valve actuator is controlled to allow the valve, when opening, to overshoot the equilibrium condition. During the overshoot, the hydraulic actuator backfills with actuating fluid at it normal actuating pressure. When the valve velocity decays to zero or near zero, the flow of hydraulic fluid to (and from) the valve actuator may be cut off, capturing the valve substantially at the overshoot position.