Abstract:
According to various embodiments, a system, an apparatus and a method are presented that relate to determining and correcting signal imbalances between output samples of an analog-to-digital (A-D) converter array (that may be implemented as part of a wideband ADC). A statistic module and correction module are associated with the A-D converter array. The statistic module is configured to receive digital samples from the plurality of A-D converters, and generate a statistical sample value for each A-D converter using a set of digital samples received therefrom. The correction module is configured to, for at least one of the plurality of A-D converters, determine an offset value by comparing the statistical sample value for the at least one of the plurality of A-D converters with a reference value, and apply the offset value to a digital sample from that at least one A-D converter to generate a corrected digital sample.
Abstract:
A system for amplifying a signal with active power management according to one embodiment includes a first digital to analog converter (DAC) circuit configured to provide a modulated carrier signal; a amplifier circuit coupled to the first DAC, where the amplifier circuit is configured to amplify the modulated carrier signal; an output stage circuit coupled to the amplifier circuit, where the output stage circuit is configured to provide the amplified signal to a network; a second DAC circuit configured to provide a full wave rectified envelope of the modulated carrier signal; and a switching regulator circuit including a voltage reference input coupled to the second DAC circuit, where the switching regulator circuit is configured to provide a supply voltage to the output stage circuit and the supply voltage is modulated in response to the envelope received at the voltage reference input.
Abstract:
A dual mode voltage regulator according to one embodiment includes a passive regulator circuit, a switching regulator circuit, and a controller circuit configured to determine parameters of an external select input. The controller is configured to selectively couple, on a cold boot up, either the passive regulator circuit or the switching regulator circuit between an input voltage port and an output load based on the determination of parameters.
Abstract:
Techniques for the reception and processing of wireless signals are disclosed. For instance, an apparatus may include multiple receiving paths, a content stream generation module, and a distribution module. The multiple receiving paths include a first receiving path that generates a first decoded signal from an input RF signal in accordance with a first tuning setting. The content stream generation module has first and second inputs. Based on decoded signals received at the first and second inputs, the content stream generation module may generate first and second content streams, respectively. In situations where both the first and second content streams correspond to the first tuning setting, the distribution module provides the first decoded signal to both the first and second inputs of the content stream generation module. Also, a control module may remove operational power from any of the plurality of receiving paths that are currently being unused.
Abstract:
Described is an apparatus which comprises: a substrate; a plurality of holes formed as vias (e.g., through-silicon-vias (TSVs)) in the substrate; and a metal loop formed in a metal layer positioned above the plurality of holes such that a plane of the metal loop is orthogonal to the plurality of holes.
Abstract:
A patch antenna system comprising: an integrated circuit die having an active side including an active layer, and a backside; a dielectric layer formed on the backside; and a redistribution layer formed on the dielectric layer wherein the redistribution layer forms an array of patches. The patch antenna further comprises a plurality of through-silicon vias (TSV), wherein the TSVs electrically connect the array of patches to the active layer.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a surface mounted device (SMD) inductor, the SMD inductor including at least two counter wound aircoils formed on a same SMD former; wherein the at least two counter wound aircoils are connected to three terminals on the SMD former, wherein a single terminal is connected to a common node of both windings with two independent terminals accessing the other winding node.
Abstract:
A method and system for implementing a gain control with fine resolution and minimal additional circuitry. The fine digital gain control may be deployed in conjunction with a coarse switched gain at the front end of a sampling receiver. The fine digital gain control mechanism is configured to receive an input signal and moderate gains applied to the received input signal. The output of a low noise amplifier (LNA) is connected to a switched attenuator which provides fine gain stepped gain control. The output of this stage is connected to the switch stage whose output is connected to a charge redistribution successive approximation register digital-to- analog converter (SAR ADC) configured to convert an analog waveform into a digital representation.
Abstract:
Generally, this disclosure describes an apparatus, systems and methods for adaptively controlling a voltage regulator. The apparatus may include a differencing circuit configured to generate an error signal based on a difference between a reference voltage and the output voltage of the voltage regulator; a proportional control circuit coupled to the differencing circuit, the proportional control circuit configured to generate a control signal proportional to the error signal; a derivative control circuit coupled to the differencing circuit, the derivative control circuit configured to generate a control signal based on the derivative of the error signal; a summer circuit coupled to the proportional control circuit and the derivative control circuit, the summer circuit configured to sum the proportional control signal and the derivative control signal; a PWM signal generator circuit coupled to the summer circuit, the PWM generator circuit configured to adjust the PWM modulation based on the summed control signal; and a state monitor circuit configured to monitor the state of the output voltage and perform a gain adjustment on the proportional control signal and the derivative control signal based on the monitored state.
Abstract:
Techniques are disclosed for forming a through-body-via (TBV) isolated coaxial capacitor in a semiconductor die. In some embodiments, a cylindrical capacitor provided using the disclosed techniques may include, for example, a conductive TBV surrounded by a dielectric material and an outer conductor plate. The TBV and outer plate can be formed, for example, so as to be self-aligned with one another in a coaxial arrangement, in accordance with some embodiments. The disclosed capacitor may extend through the body of a host die such that its terminals are accessible on the upper and/or lower surfaces thereof. Thus, in some cases, the host die can be electrically connected with another die to provide a die stack or other three-dimensional integrated circuit (3D IC), in accordance with some embodiments. In some instances, the disclosed capacitor can be utilized, for example, to provide integrated capacitance in a switched-capacitor voltage regulator (SCVR).