Abstract:
An ion guide is provided having an enclosure extending longitudinally around a central axis from a proximal inlet end to a distal outlet end. The proximal inlet end receives a plurality of ions entrained in a gas flow through an inlet orifice. A deflection plate is disposed within the enclosure between the proximal and distal ends and deflects at least a portion of the gas flow away from a central direction of the gas flow. A plurality of electrically conductive, elongate elements extend from the proximal end to the distal end within the enclosure and generate an electric field via a combination of RF and DC electric potentials. The electric field deflects the entrained ions away from the central direction of the gas flow proximal to the deflection plate and confines the deflected ions in proximity of the elongated elements as the ions travel downstream.
Abstract:
A method for operating tandem ion traps is provided, involving a) accumulating ions in the first ion trap at a first time; b) transmitting a first plurality of ions out of the first ion trap and into the second ion trap at a second time, the first plurality of ions having masses within a first mass range; c) retaining a second plurality of ions in the first ion trap at the second time, the second plurality of ions having masses within a second mass range different from the first mass range; d) transmitting the first plurality of ions out of the second ion trap at a third time; and, e) transmitting the second plurality of ions out of the first ion trap and into the second ion trap at the third time.
Abstract:
In some embodiments, a quantitative analysis of at least one ion signal associated with a sample, which is detected by a mass spectrometer having at least two tandem quadrupole instruments, is employed to select one of the following operational modes for further mass analysis of the sample: (a) utilizing both quadrupole instruments as mass resolving filters, and (b) utilizing one quadrupole instrument as a mass resolving filter and utilizing the other as a linear ion trap. In some embodiments, the quantitative analysis of the ion signal comprises comparing the ion signal intensity with a predefined threshold.
Abstract:
Systems and methods are used to band-pass filter ions from a mass range. A full spectrum is received for a full scan of a mass range using a tandem mass spectrometer. A mass selection window of the full spectrum is selected and a set of tuning parameter values is selected. The tandem mass spectrometer is instructed to perform a scan of the mass selection window using the set of tuning parameter values. A spectrum is received for the scan from the tandem mass spectrometer. A band-pass filtered spectrum is created for the mass range that includes values from the spectrum for the mass selection window of the mass range. Systems and methods are also used to band-pass filter ions from two or more mass selection windows across the mass range and to filter out ions from a mass selection window between two band-pass mass selection windows.
Abstract:
A method for obtaining fragment ions having product ion spectrum with a mixture of high, medium and lower energy product ions. The method includes (a) providing a selected RF field to an ion optical element upstream of an ion containment field; (b) transmitting ions through the ion optical element and into the ion containment field such that the selected RF field determines, at least in part, a selected kinetic energy profile of the ions within the ion containment field, wherein the selected kinetic energy profile is selected to fragment the ions to concurrently provide a plurality of groups of product ions; and (c) detecting each group of product ions in the plurality of groups of product ions.
Abstract:
Dual TDC-ADC detection systems for time of flight mass spectrometry are disclosed herein. Detection systems based upon TDC generally provide higher timing resolution as opposed to detection systems based upon ADC. However, ADC generally provides increased dynamic range over TDC. By combining TDC and ADC into a tandem detector, and adjusting performance parameters of the respective converter types, the dynamic range of the dual TDC-ADC detection can be extended beyond what either detector type could have achieved individually. Composite time of flight mass spectra can be generated by aggregating individual mass spectra acquired from multiple time-of-flight extractions, and selecting the number of time-of-flight extractions to ensure overlap between the ADC and TDC dynamic ranges in the dual TDC-ADC detector system.
Abstract:
Labeling reagents, sets of labeling reagents, and labeling techniques are provided for the relative quantitation, absolute quantitation, or both, of ketone or aldehyde compounds including, but not limited to, analytes comprising steroids or ketosteroids. The analytes can be medical or pharmaceutical compounds in biological samples. Methods for labeling, analyzing, and quantifying ketone or aldehyde compounds are also disclosed as are methods that also use mass spectrometry.
Abstract:
Systems and methods are provided to perform dead time correction. An observed ion count rate is obtained using a non-paralyzable detection system of a mass spectrometer. The detection system includes an ion detector, a comparator/discriminator, a mono-stable circuit and a counter. The non- paralyzable detection system exhibits dead time extension at high count rates. The extension of the dead time occurs because the mono-stable circuit requires a rising edge to trigger and can only be triggered again after the output pulse from the comparator/discriminator has gone low. This allows a second comparator/discriminator pulse arriving just before the end of the dead time started by a first comparator/discriminator pulse to extend the dead time to the trailing edge of the second comparator/discriminator pulse. A true ion count rate is calculated by performing dead time correction of the observed ion count rate.
Abstract:
Systems and methods are used to rapidly screening samples. A fast sample introduction device that is non-chromatographic is instructed to supply each sample of a plurality samples to a tandem mass spectrometer using a processor. The fast sample introduction device can include a flow injection analysis device, an ion mobility analysis device, or a rapid sample cleanup device. The tandem mass spectrometer is instructed to perform fragmentation scans at two or more mass selection windows across a mass range of each sample of the plurality of samples using the processor. The two or more mass selection windows across the mass range can have fixed or variable window widths. The tandem mass spectrometer can be instructed to obtain a mass spectrum of the mass range before instructing the tandem mass spectrometer to perform the fragmentation scans.
Abstract:
A system and method is disclosed for extracting a sample from a sample surface. A sample is provided and a sample surface receives the sample which is deposited on the sample surface. A hydrophobic material is applied to the sample surface, and one or more devices are configured to dispense a liquid on the sample, the liquid dissolving the sample to form a dissolved sample material, and the one or more devices are configured to extract the dissolved sample material from the sample surface.