摘要:
Described herein are fNIR-based brain computer interfaces. Training of individuals to intentionally control neural activity in specific cortical areas, thereby up-regulating and down- regulating oxygenation levels in specific locations in the brain is also provided herein. Further, continuous and/or binary control over computing environments using fNIR brain computer interfaces. Further still, a scale for brain interface index for oxygenation of a portion of the brain is provided herein.
摘要:
Aspects of the present subject matter are directed to a method comprising contacting an fluid, optionally containing an added organic material, with a non-thermal plasma to form a disinfection composition, wherein the disinfection composition is a liquid, and contacting a surface with the disinfection composition, wherein the surface is at least partially disinfected upon contact with the disinfection composition. Additional aspects of the present subject matter are directed to a method comprising forming a disinfection composition by contacting an organic material with a non-thermal plasma, wherein the disinfection composition is a liquid. A further aspect of the present subject matter is directed to a disinfection composition comprising an organic material contacted by a non-thermal plasma, wherein the disinfection composition is a liquid.
摘要:
The use of non-thermal plasma to treat mucus membrane bleeding is described herein. A non-thermal plasma is generated using an apparatus having a first electrode that receives alternating electrical potentials from a power supply. When placed in an appropriate location proximate to tissue, a non-thermal plasma is generated, the second electrode being human tissue, blood, etc. To reduce the likelihood of an arc being generated, potentially causing tissue damage or pain, the first electrode is partially encapsulated by a dielectric. The non-thermal plasma is applied to the area of bleeding for treatment.
摘要:
Electrodes for intracorporeal and other uses are provided. The invention features sterilizable, braided electrodes which are formed of or include conductive elements in electronic communication with a plurality of sites for electrical stimulation or sensing. Other active elements may be included in the braided electrodes.
摘要:
A sensor system for measuring an elastic modulus and a shear modulus and a method for evaluating a tissue. The invention pertains to a method for determining the presence of and/or characterizing abnormal growths, using a piezoelectric finger sensor (PEFS) system. The PEFS system may be particularly useful for screening for tumors and various forms of cancer. Additionally, the PEFS system may be useful for various dermatological applications.
摘要:
The invention includes compositions and methods useful for the diagnosis, prognosis, treatment, assessment, and characterization of inflammation or pain (e.g., neuropathic pain) in a subject in need thereof, based upon the expression level of at least one miRNA that is associated with inflammation or pain. In one aspect, the invention relates to compositions and methods for the prediction of a subject's responsiveness of a treatment of inflammation or pain.
摘要:
A method and apparatus for fabricating microbraided structures is provided. A microbraiding device includes first and second carrier members that are movable with respect to each other. Each carrier includes a plurality of shelters. Spool-less strands of microfiber are retained in shuttles that are movable between the first and second shelters under magnetic forces. The microbraid structure is fabricated as the shuttles move between the first shelters, and as the first carrier member moves relative to the second carrier member.
摘要:
Knitting machines are used to intermesh conductive yarns into loops resulting in knitted fabrics. The knitting machine is adapted to import different types of yarns (conductive and non- conductive) directly into the knit structure. Combining conductive yarns and knitting systems allows for integration of electrical or mechanical component designs into existing clothing fabrication processes, avoiding current limitations of attaching or gluing conductive fabrics or other components over various materials. Starting with a planar design of an antenna, RFID tag, or some other electronic structure, the layout is converted into a CAD knitting program including a grid representing stitches. The CAD specifications of the final design/product are exported to the knitting machines so that the knitting machine may make conductive fabrics in accordance with the CAD specifications. The conductive fabrics are knitted into a variety of garments that monitor the vital signs of the wearer, including the fetus of an expectant mother.
摘要:
A tissue joining device and a surgical instrument for employing the tissue joining device are provided. The tissue joining device may be designed such that a first member may be inserted into a second member in discrete increments so that two lumen structures can properly be combined.
摘要:
Optical changes of tissue during wound healing measured by Near Infrared and Diffuse Reflectance Spectroscopy are shown to correlate with histologic changes. Near Infrared absorption coefficient correlated with blood vessel in-growth over time, while Diffuse Reflectance Spectroscopy (DRS) data correlated with collagen concentration. Changes of optical properties of wound tissue at greater depths are also quantified by Diffuse Photon Density Wave (DPDW) methodology at near infrared wavelengths. The diffusion equation for semi-infinite media is used to calculate the absorption and scattering coefficients based on measurements of phase and amplitude with a frequency domain or time domain device. An increase in the absorption and scattering coefficients and a decrease in blood saturation of the wounds compared to the non wounded sites was observed. The changes correlated with the healing stage of the wound. The methodologies used to collect information regarding the healing state of a wound may be used to clinically assess the efficacy of wound healing agents in a patient (e.g., a diabetic) and as a non-invasive method to detect the progress of wound healing, particularly chronic wounds due to diabetes. The methodology applies to ischemic environments, impaired healing states, and emerging subsurface tissue deterioration, such as in pressure ulcers, venous ulcers, and ubiquitous ulcers.