Abstract:
Biomass is devolatilized to produce both a combustible fuel (syngas) and activated carbon. The activated carbon is used as an adsorbent to capture a contaminant, such as mercury, and stored in a landfill, is impregnated with components with inherent fertilizer properties and tilled into arable land, is used along with coal in an electric power generation facility, or is used to remove mercury or other heavy metals from the flue gas of a coal fired power generation station prior to being stored so as to sequester both carbon and the heavy metal. Thus, both the carbon and the adsorbed mercury or other chemical are sequestered.
Abstract:
Biomass or refuse-derived fuels (10) and seawater or other non-potable water are used as an input to a combustor/evaporator (15, 20). The resulting steam heats a working fluid in an Organic Rankine Cycle (30, 50, 60, 75) process which drives a turbine (50) to produce mechanical rotation. This rotation can be used to directly drive a process or to generate electricity. The heating of the working fluid cools the steam to produce purified water. The evaporator provides a water purification process for both the separation of dissolved components as well as providing for thermal pasteurization / sterilization. Suitable water inputs are seawater, brackish water and water with those waterborne diseases and pathogens which can be killed through pasteurization/sterilization.
Abstract:
Biomass or refuse-derived fuels (10) and seawater or other non-potable water are used as an input to a combustor/evaporator (15, 20). The resulting steam heats a working fluid in an Organic Rankine Cycle (30, 50, 60, 75) process which drives a turbine (50) to produce mechanical rotation. This rotation can be used to directly drive a process or to generate electricity. The heating of the working fluid cools the steam to produce purified water. The evaporator provides a water purification process for both the separation of dissolved components as well as providing for thermal pasteurization / sterilization. Suitable water inputs are seawater, brackish water and water with those waterborne diseases and pathogens which can be killed through pasteurization/sterilization.
Abstract:
The invention comprises, in one form thereof, a technique which allows biomass to be utilized as a fuel for the co-production of electrical power and potable water in a most efficient manner. Almost any biomass is suitable as a feedstock and biomass which is locally available may be used to fuel the process. The biomass is fed into a gasification device to produce a gas stream containing appreciable amounts of carbon monoxide and hydrogen. The gas stream is used to fuel an electrical generation system Waste heat from the electrical generation system is recovered and used in the purification of saline, brakish or river and well water to produce highly pure potable water.
Abstract:
Biomass is devolatilized to produce both a combustible fuel (syngas) and activated carbon. The activated carbon is used as an adsorbent to capture a contaminant, such as mercury, and stored in a landfill, is impregnated with components with inherent fertilizer properties and tilled into arable land, is used along with coal in an electric power generation facility, or is used to remove mercury or other heavy metals from the flue gas of a coal fired power generation station prior to being stored so as to sequester both carbon and the heavy metal. Thus, both the carbon and the adsorbed mercury or other chemical are sequestered.
Abstract:
A method for recycling the waste heat generated from an external process, which is fuelled by syngas, into a gasification process to enhance the energy density of the syngas produced as well as the overall gasification efficiency of the system. A method is provided for utilizing the waste heat contained in a stream exiting in the syngas fueled process to vaporize water and produce steam. The steam is then upgraded by first exchanging energy with the hot syngas exiting the gasifier and then within the gasifier itself to a temperature where significant steam gasification of the biomass occurs. The process within the gasifier is driven by introducing a small amount of air into the gasifier such that some biomass is directly combusted to provide the heat required by the process.
Abstract:
A method for forming compressed matter structures suitable as a fuel source comprising producing a glycerine-rich binding agent by a method comprising (i) providing a feedstock, (ii) mixing the feedstock with an alcohol and a catalyst to form a reaction product, (iii) obtaining a glycerine-rich phase from the reaction product; providing a carbon-containing material; adding an effective amount of the glycerine-rich phase to the carbon-containing material to form a mixture; and forming compressed material from the mixture. Also provided is a compressed structure produced by the method.
Abstract:
An apparatus and method for the continuous production of biofuel by the transesterification of a triglyceride. The apparatus comprises a high shear homogenizer; a reaction chamber; a gravity driven separation device; an evacuated packed thin film stripper; a counter current pack water contactor; and, an evacuated packed spray drier, wherein each component operates with minimal heat and mass transfer resulting in a high capacity process with a reduced footprint.
Abstract:
The invention comprises, in one form thereof, a technique which allows biomass to be utilized as a fuel for the co-production of electrical power and potable water in a most efficient manner. Almost any biomass is suitable as a feedstock and biomass which is locally available may be used to fuel the process. The biomass is fed into a gasification device to produce a gas stream containing appreciable amounts of carbon monoxide and hydrogen. The gas stream is used to fuel an electrical generation system Waste heat from the electrical generation system is recovered and used in the purification of saline, brakish or river and well water to produce highly pure potable water.
Abstract:
A method for recycling the waste heat generated from an external process, which is fuelled by syngas, into a gasification process to enhance the energy density of the syngas produced as well as the overall gasification efficiency of the system. A method is provided for utilizing the waste heat contained in a stream exiting in the syngas fueled process to vaporize water and produce steam. The steam is then upgraded by first exchanging energy with the hot syngas exiting the gasifier and then within the gasifier itself to a temperature where significant steam gasification of the biomass occurs. The process within the gasifier is driven by introducing a small amount of air into the gasifier such that some biomass is directly combusted to provide the heat required by the process.