Abstract:
Energy-efficient gasification-based multi-generation apparatus, facilities, or systems, and methods of modifying existing gasification-based multi-generation apparatus and the various conventional thermal coupling arrangements, are provided. An exemplary gasification-based multi-generation apparatus includes a gasification system configured to generate the raw syngas feed from a carbon-based feedstock. The gasification system includes a gasification plant or facility, a sour water stripping plant or facility comprising a sour water stripper, a gasification reactor, and a gasification system energy management system. The gasification system energy management system comprises a third gasification system process-to-process heat exchanger unit positioned to receive a wastewater bottom stream from the sour water stripper and to receive at least a portion of an oxygen feed to the gasification reactor to provide heat energy to the at least a second portion of the oxygen feed to the gasification reactor and to cool the wastewater bottom stream from the sour water stripper. The sour water stripping plant or facility is integrated into the gasification plant or facility through at least the wastewater bottom stream from the sour water stripper.
Abstract:
Energy-efficient gasification-based multi-generation apparatus, facilities, or systems, and methods of modifying existing gasification-based multi-generation apparatus and the various conventional thermal coupling arrangements, are provided. An exemplary gasification-based multi-generation apparatus includes a gasification system configured to generate raw syngas feed from a carbon-based feedstock, and an acid gas removal system configured to remove acidic contaminants from the raw syngas feed to thereby provide a treated syngas feed. The gasification system includes a gasification reactor, a syngas fluid cooler reactor, and a soot ash removal unit comprising a soot quench column, a soot separator, a soot filter, a soot scrubber, and a gasification system energy management system having a conventional set of heat exchanger unit and an added set of heat exchanger units to enhance energy efficiency. The acid gas removal system includes a reactor, an acid gas contaminant absorber, a solvent regenerator, and an acid gas removal system energy management system having a conventional set of heat exchanger unit and an added set of heat exchanger units to enhance energy efficiency.
Abstract:
Procedimiento para el acondicionamiento de una corriente de gas proveniente de un gasificador, craqueo térmico de alquitranes y reformado con vapor de dicha corriente de gas que comprende las etapas de a) hacer pasar una corriente de gas que proviene de un gasificador por un distribuidor (1), b) hacer pasar la corriente de gas acondicionada en el distribuidor (1) a la cámara de craqueo térmico (2) del reactor, c) hacer pasar la corriente de gas proveniente de la cámara de craqueo térmico (2) a la cámara de reformado (3), d) hacer pasar la corriente de gas de la etapa c) por la sección del reactor donde se ubica exteriormente el intercambiador de calor (4) y e) sacar la corriente de gas producto a una temperatura de entre 340º C - 400º C por la salida de la corriente de gas producto (11).
Abstract:
A gasification system including: a casing defining: a solid material inlet; a fixed bed drying zone proximal the solid material inlet; a fixed bed pyrolysis zone arranged below the drying zone along a gravity vector, distal the solid material inlet across the pyrolysis zone; a kinetic bed combustion zone surrounded by the pyrolysis zone; and a fluidization channel extending through the drying zone and pyrolysis zone and fluidly connected to the combustion zone, the fluidization channel defining a kinetic bed reduction zone fluidly isolated from and thermally connected to the pyrolysis zone and the drying zone by the fluidization channel.
Abstract:
Disclosed are cooling and depressurization system equipment, arrangement and methods to cool solid particles from a coal gasifier operating at high temperature and pressure. Ash from the coal needs to be continuously withdrawn from a circulating fluidized bed gasifier to maintain the solids inventory in the gasifier. The system disclosed enables use of conventional materials of construction for heat transfer surfaces. The supports for the cooling surfaces are located on the lower temperature upper section of the primary cooler. The cooled solids along with the fluidizing gas exits the primary cooler to a secondary receiving vessel where the solids can be further cooled by conventional means. The fluidizing and entrained gas entering the secondary vessel is filtered and vented through a vent pressure control valve. The column of cooled solids in the secondary vessel is depressurized by a continuous depressurization system to low pressures which are sufficient for conveying the solids to silos for disposal. The system and methods proposed are equally applicable to many high temperature, high pressure processes that require cooling and depressurization of process solids.
Abstract:
According to an embodiment, a biomass conversion subsystem produces methane and/or alcohol and residual biomass. A pyrolysis or a gasification subsystem is used to produce thermal energy and/or process gasses. The thermal energy may be stored thermal energy in the form of a pyrolysis oil. A fuel conversion subsystem produces liquid hydrocarbon fuels from the methane and/or alcohol using thermal energy and/or process gasses produced by the gasification or pyrolysis subsystem. Because the biomass production system integrates the residual products from biomass conversion and the residual thermal energy from pyrolysis or gasification, the overall efficiency of the integrated biomass production system is greatly enhanced.
Abstract:
A method, apparatus, and system for solar-driven chemical plant may include a solar thermal receiver to absorb concentrated solar energy from an array of heliostats. Additionally, some embodiments may include a solar driven chemical reactor that has multiple reactor tubes. The concentrated solar energy drives the endothermic gasification reaction of the particles of biomass flowing through the reactor tubes. Some embodiments may also include an on-site fuel synthesis reactor that is geographically located on the same site as the chemical reactor and integrated to receive the hydrogen and carbon monoxide products from the gasification reaction.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant are disclosed. An embodiment may include a solar thermal receiver aligned to absorb concentrated solar energy from one or more solar energy concentrating fields. A solar driven chemical reactor may include multiple reactor tubes located inside the solar thermal receiver. The multiple reactor tubes can be used to gasify particles of biomass in the presence of a carrier gas. The gasification reaction may produce reaction products that include hydrogen and carbon monoxide gas having an exit temperature from the tubes exceeding 1000 degrees C. An embodiment can include a quench zone immediately downstream of an exit of the chemical reactor. The quench zone may immediately quench via rapid cooling of at least the hydrogen and carbon monoxide reaction products within 0.1 -10 seconds of exiting the chemical reactor to a temperature of 800 degrees C or less.
Abstract:
An integrated gasification combined cycle power generation system (100). In one embodiment, shown in FIG. (1), a gasifier (108) is configured to generate synthetic gas (117) from a carbonaceous material (106) and an oxygen supply (109) with a cleaning stage (120) positioned to receive synthetic gas (117) from the gasifier (108) and remove impurities therefrom. A gas turbine combustion system (2) including a turbine (123) is configured to receive fuel (128) from the gasifier (108) and a first air supply (131) from a first air compressor (130). A steam turbine system (4) is configured to generate power with heat recovered from exhaust (140) generated by the gas turbine system (2) and an ion transport membrane air separation unit (110) includes a second air compressor (114) for generating a second air supply (113). A first heat exchanger (118) is configured to cool the synthetic gas (117) prior to removal of impurities in the cleaning stage (120) by flowing the second air supply (113) through the first heat exchanger (118) so that the second air supply (113) receives heat from the synthetic gas (117).