Abstract:
Disclosed herein is a coating having a layer that includes a matrix phase and a dispersed phase substantially immiscible in the matrix phase and methods of using the same.
Abstract:
Methods and compositions for the sustained release of treatment agents to treat an occluded blood vessel and affected tissue and/or organs are disclosed. Porous or non-porous bioabsorbable glass, metal or ceramic bead, rod or fiber particles can be loaded with a treatment agent, and optionally an image-enhancing agent, and coated with a sustained-release coating for delivery to an occluded blood vessel and affected tissue and/or organs by a delivery device. Implantable medical devices manufactured with coatings including the particles or embedded within the medical device are additionally disclosed.
Abstract:
Methods and compositions for the sustained release of treatment agents to treat an occluded blood vessel and affected tissue and/or organs are disclosed. Porous or non-porous bioabsorbable glass, metal or ceramic bead, rod or fiber particles can be loaded with a treatment agent, and optionally an image-enhancing agent, and coated with a sustained-release coating for delivery to an occluded blood vessel and affected tissue and/or organs by a delivery device. Implantable medical devices manufactured with coatings including the particles or embedded within the medical device are additionally disclosed.
Abstract:
Medical devices having a catalyst capable of catalyzing the generation of nitric oxide attached to the medical device and methods of treating a vascular condition using the devices are provided.
Abstract:
A polymer for a medical device, particularly for a drug eluting stent, is described. The polymer can be derived from n-butyl methacrylate and can have a degree of an elongation at failure from about 20 % to about 500 %.
Abstract:
A medical device comprising a coating thereon comprising a biocompatible polymer and heparin is provided herein. Heparin is coupled with the biocompatible polymer via a spacer having a grouping that renders a binding site of the heparin molecule accessible by a binding protein. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
ABSTRACT A polymer comprising phospholipid moieties and a biocompatible polymer backbone, a composition comprising the polymer and optionally a bioactive agent, an implantable devices such as a DES comprising thereon a coating comprising the polymer and optionally a bioactive agent, and a method of using the device for the treatment of a disorder in a human being are provided.
Abstract:
Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings comprising polymers of lactic acid.