Abstract:
A process for production of a microporous affinity membrane having regioselective affinity for compounds in blood or other biologically active fluids to be removed during purification of blood or said fluids is disclosed, as well as a microporous affinity membrane produced by said process, an adsorption device containing such a microporous affinity membrane, and use of such a microporous affinity membrane.
Abstract:
The present disclosure relates to an improved system for liver dialysis, which makes use of a high cut-off hemodialysis membrane for removing water-soluble and protein bound toxins from the blood of a person in need. The specific hollow fiber membrane has the potential to improve the removal of albumin bound toxins and of inflammatory mediators. The present disclosure also relates to a high cut-off hemodialysis membrane for the treatment of liver failure.
Abstract:
The present invention relates to a permselective asymmetric hollow fibre membrane for the separation of toxic mediators from blood, comprised of at least one hydrophobic polymer and at least one hydrophilic polymer. Further, the present invention relates to a process for the preparation of such a membrane, and the use of said membrane in hemodialysis, hemodiafiltration and hemofiltration for treatment of toxic mediator related diseases.
Abstract:
A fluid distribution module (1) for causing and monitoring the circulation of fluids from and to a patient through an extracorporeal blood treatment device, comprises a degassing device (11) connected to a connecting structure (10). The degassing device (11) comprises a first chamber (12) having a lower inlet (13) for a liquid and a second chamber (14) having an upper opening (79) closed by a hydrophobic membrane (78) and an outlet (15) for discharging the liquid. The connecting structure (10) has at least a first and a second conduits (20, 21) defined therein, wherein the first conduit (20) comprises a first end for connection to a discharge tube (7) from the treatment device and a second end connected to the inlet (13) of the first chamber (12) of the degassing device (11), and the second conduit (21) comprises a first end connected to the outlet (15) of the second chamber (14) of the degassing device (11) and a second end for connection to a blood return tube (6) to a patient.
Abstract:
The present disclosure relates to graft copolymers of hydrophobic polymers and hydrophilic polymers, to a method for their preparation, and their use in membranes for medical treatments like hemodialysis, hemodiafiltration and hemofiltration, in membranes for water purification, and membranes for bio-processing.
Abstract:
A degassing device (203) comprises a first chamber (21) having an inlet for a liquid, and a second chamber (22) having an opening (23) closed by a hydrophobic membrane (24) and an outlet (25) for discharging the liquid. The first chamber (21) has a downstream portion that partially extends within the second chamber (22) and communicates therewith by a passageway (28). The second chamber (22) has a downstream portion that extends below the passageway (28) and asymmetrically surrounds the downstream portion of the first chamber (21).
Abstract:
An integrated blood treatment module comprises a blood treatment device (1) having a housing (2) and a first end-cap (4) and a second end-cap (5) closing both ends of the housing (2). A pump hose (17) for a peristaltic pump has a first end (18) that is secured to the housing (2) and a second end (16) that is connected to a blood inlet port (15) of the first end-cap (4) so as to form a loop. A degassing device (30) is connected to the second end-cap (5). The degassing device (30), which, in use, is full of liquid, comprises a hydrophobic membrane through which bubbles and micro-bubbles escape the degassing device.
Abstract:
A tube (1, 3, 7) for medical applications comprises a chlorine-free material and has a layer (2, 4, 8) defining an outer surface (2a, 4a, 8a) of the tube (1, 3, 7) and is manufactured from a polymer material having a solubility parameter within the range 9.9 ± 1.5 (cal/cm 3 ) ½ .
Abstract translation:用于医疗应用的管(1,3,7)包括无氯材料并且具有限定管(1,3,7)的外表面(2a,4a,8a)的层(2,4,8) 并且由溶解度参数在9.9±1.5(cal / cm 3)1/2范围内的聚合物材料制成。