Abstract:
Methods and apparatus are disclosed herein. In some embodiments, methods of controlling process chambers may include predetermining a relationship between pressure in a processing volume and a position of an exhaust valve as a function of a process parameter; setting the process chamber to a first state having a first pressure in the processing volume and a first value of the process parameter, wherein the exhaust valve is set to a first position based on the predetermined relationship to produce the first pressure at the first value; determining a pressure control profile to control the pressure as the process chamber is changed to a second state having a second pressure and a second process parameter value from the first state; and applying the pressure control profile to control the pressure by varying the position of the exhaust valve while changing the process chamber to the second state.
Abstract:
A method and apparatus are provided for a cost effective pressure dampening device used in a fluid delivery system for substrate processing. In one embodiment, the pressure dampening device is disposed between a mounting substrate and a control valve within a fluid control assembly in fluid communication with a substrate processing chamber. The pressure dampening device is capable of dampening small pressure perturbations in a process fluid which is used for substrate processing.
Abstract:
Methods and apparatus are disclosed herein. In some embodiments, methods of controlling process chambers may include predetermining a relationship between pressure in a processing volume and a position of an exhaust valve as a function of a process parameter; setting the process chamber to a first state having a first pressure in the processing volume and a first value of the process parameter, wherein the exhaust valve is set to a first position based on the predetermined relationship to produce the first pressure at the first value; determining a pressure control profile to control the pressure as the process chamber is changed to a second state having a second pressure and a second process parameter value from the first state; and applying the pressure control profile to control the pressure by varying the position of the exhaust valve while changing the process chamber to the second state.
Abstract:
Embodiments of the present invention generally relate to methods of controlling gas flow in etching chambers. The methods generally include splitting a single process gas supply source into multiple inputs of separate process chambers, such that each chamber processes substrates under uniform processing conditions. The method generally includes using a mass flow controller as a reference for calibrating a flow ratio controller. A span correction factor may be determined to account for the difference between the actual flow and the measured flow through the flow ratio controller. The span correction factors may be used to determine corrected set points for each channel of the flow controller using equations provided herein. Furthermore, the set points of the flow ratio controller may be made gas-independent using additional equations provided herein.
Abstract:
Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.
Abstract:
Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.
Abstract:
Embodiments of the present invention generally relate to methods of controlling gas flow in etching chambers. The methods generally include splitting a single process gas supply source into multiple inputs of separate process chambers, such that each chamber processes substrates under uniform processing conditions. The method generally includes using a mass flow controller as a reference for calibrating a flow ratio controller. A span correction factor may be determined to account for the difference between the actual flow and the measured flow through the flow ratio controller. The span correction factors may be used to determine corrected set points for each channel of the flow controller using equations provided herein. Furthermore, the set points of the flow ratio controller may be made gas-independent using additional equations provided herein.
Abstract:
A method and apparatus are provided for a cost effective pressure dampening device used in a fluid delivery system for substrate processing. In one embodiment, the pressure dampening device is disposed between a mounting substrate and a control valve within a fluid control assembly in fluid communication with a substrate processing chamber. The pressure dampening device is capable of dampening small pressure perturbations in a process fluid which is used for substrate processing.