Abstract:
A method for the real-time visualization and detection of extravasated and or infiltrated fluid and substances, including blood, that occur near the cannulation site of an injection is described wherein illumination or transillumination with near infrared light is used to image the contrast in real-time between absorbing and nonabsorbing subdermal and intradermal structures of blood vessels and remaining surrounding tissue, foreign substances and other structures in order to establish a baseline image of the body area of interest, and any new image is monitored and compared with the baseline image to detect the extravasation and/or infiltration of fluids and substances, including blood, around a vein or artery into the subdermal or intradermal tissue.
Abstract:
A combined fluid injection and inflation system is disclosed and includes a fluid delivery system including at least one pressurizing device, a fluid path, and a control unit. The fluid path is adapted to connect the pressurizing device to a patient via a catheter including a balloon and inserted in the patient. The control unit is operable to control the fluid delivery system. In operation, the control unit selectively actuates the fluid delivery system to operate in a fluid injection mode or in a balloon inflation mode. In the fluid injection mode the pressurizing device delivers fluid to the fluid path for a fluid injection procedure. In the balloon inflation mode, the pressurizing device delivers fluid to the fluid path for inflating the balloon associated with the catheter. An operator control may be connected to the control unit for controlling the fluid delivery system and may be a handheld device.
Abstract:
A system for delivering a fluid comprising cells to tissue of a patient, includes: a least a first container for holding an injection fluid in which the agent is carried; a first powered drive in operative connection with the container, the first powered drive being operable to pressurize contents of the container; a control system in operative connection with the first powered drive and operative to control the first powered drive; a fluid path in fluid connection with the container, the fluid path including a patient interface adapted to deposit the cells within tissue of the patient; a sensor system; and a communication system in connection with at least the control system and the sensor system. The communication system is adapted to provide information to the control system. The control system in adapted to transmit a control signal to at least the first powered drive based at least in part on information provided to the control system. The cells can for example be progenitor cells or stem cells.
Abstract:
A system for delivering a fluid comprising cells to tissue of a patient, includes: a least a first container for holding an injection fluid in which the agent is carried; a first powered drive in operative connection with the container, the first powered drive being operable to pressurize contents of the container; a control system in operative connection with the first powered drive and operative to control the first powered drive; a fluid path in fluid connection with the container, the fluid path including a patient interface adapted to deposit the cells within tissue of the patient; a sensor system; and a communication system in connection with at least the control system and the sensor system. The communication system is adapted to provide information to the control system. The control system in adapted to transmit a control signal to at least the first powered drive based at least in part on information provided to the control system. The cells can for example be pregenitor cells or stem cells.
Abstract:
A method for the real-time visualization and detection of extravasated and or infiltrated fluid and substances, including blood, that occur near the cannulation site of an injection is described wherein illumination or transillumination with near infrared light is used to image the contrast in real-time between absorbing and nonabsorbing subdermal and intradermal structures of blood vessels and remaining surrounding tissue, foreign substances and other structures in order to establish a baseline image of the body area of interest, and any new image is monitored and compared with the baseline image to detect the extravasation and/or infiltration of fluids and substances, including blood, around a vein or artery into the subdermal or intradermal tissue.
Abstract:
The invention relates to systems, methods, and associated devices for wirelessly communicating physiologic signals or other data in an electromagnetically noisy environment, such as a magnetic resonance imaging (MRI) suite. They permit wireless communication of data obtained from a sensor module attached to a patient while situated within the bore of an MR scanner. The system includes a first transceiver and a second transceiver. The first transceiver is linked to the sensor module for transmitting the data received therefrom. The second transceiver, which is connected to an apparatus remote from the first transceiver, is used to convey to the apparatus the data received from the first transceiver . The first and second transceivers enable the sensor module and the apparatus to communicate unidirectionally or bidirectionally without being adversely affected by, or adversely affecting, the operation of the MR system.
Abstract:
A device for penetrating tissue and removing a biological sample includes a biological sampling element to remove a biological sample. The biological sampling element includes a passage therethrough. The device further includes a penetrator (101) positioned within the passage. The penetrator (101) is energized in a repetitive manner to assist in penetrating tissue. The biological sample element can be adapted to remove a tissue sample or a biological fluid sample (for example, blood). A device for penetrating tissue and positioning a tissue resident conduit (for example, a catheter (400)), includes a tissue resident conduit (for example, a catheter (400)) including a passage therethrough; and a penetrator in operative connection with the catheter (400). A device for inserting a tissue resident conduit includes at least one component that is energized during penetration to assist in penetrating tissue.
Abstract:
An image acquisition system operable to obtain an image of at least a portion of a body, includes an imaging system including at least one energy sensor to measure energy from the body, an image creating system adapted to create an image based at least in part from a signal from the at least one energy sensor, an image display in operative connection with the image creating system and a user interface in operative connection with the image creating system. The image acquisition system further includes a fluid injector system including at least one source of a first fluid, a pressurizing system in operative connection with the source of the first fluid, and a user interface in operative connection with the pressurizing system. The imaging system and the injector system are operatively integrated in at least two of the following and/or other aspects: physical connection, data input via at least one common user interface, displaying of information via at least one common display, electrical connection to at least one common power conditioning system, receipt of common data from at least one patient physiological sensor, at least one common communication port to at least one information system, and a common control system (including any common portion of a control system).
Abstract:
A device for penetrating tissue and removing a biological sample includes a biological sampling element to remove a biological sample. The biological sampling element includes a passage therethrough. The device further includes a penetrator positioned within the passage. The penetrator is energized in a repetitive manner to assist in penetrating tissue. The biological sample element can be adapted to remove a tissue sample or a biological fluid sample (for example, blood). A device for penetrating tissue and positioning a tissue resident conduit (for example, a catheter), includes a tissue resident conduit (for example, a catheter) including a passage therethrough; and a penetrator in operative connection with the catheter. A device for inserting a tissue resident conduit includes at least one component that is energized during penetration to assist in penetrating tissue. In one embodiment, the tissue resident conduit is flexible and the energized component is positioned or a forward end of the tissue resident conduit. The device can further include a mechanism for directing the penetration of the tissue resident conduit. A needle for penetrating tissue includes a first effector including a surface and at least one actuator in operative connection with the first effector. The actuator is adapted to cause motion of the first effector such that tearing of tissue takes place in regions where there is close proximity of tissue to the surface of the first effector.
Abstract:
An image acquisition system operable to obtain an image of at least a portion of a body, includes an imaging system including at least one energy sensor to measure energy from the body, an image creating system adapted to create an image based at least in part from a signal from the at least one energy sensor, an image display in operative connection with the image creating system and a user interface in operative connection with the image creating system. The image acquisition system further includes a fluid injector system including at least one source of a first fluid, a pressurizing system in operative connection with the source of the first fluid, and a user interface in operative connection with the pressurizing system. The imaging system and the injector system are operatively integrated in at least two of the following and/or other aspects: physical connection, data input via at least one common user interface, displaying of information via at least one common display, electrical connection to at least one common power conditioning system, receipt of common data from at least one patient physiological sensor, at least one common communication port to at least one information system, and a common control system (including any common portion of a control system).