Abstract:
A bladder syringe for a fluid delivery system includes a cylindrical body, a cap-bladder assembly, a plunger element disposed in the cylindrical body, and a mounting assembly to secure the cap-bladder assembly to the cylindrical body. The cylindrical body has a distal end and a proximal end and defines a throughbore. The cap-bladder assembly is adapted for connection to the distal end of the cylindrical body, and includes a cap body and a bladder. The cap body defines an interior cavity and a distal discharge conduit and is adapted to engage the distal end of the cylindrical body. A disc-shaped bladder is disposed within the interior cavity and typically includes a central membrane portion. The plunger element is disposed in the throughbore of the cylindrical body and is vented to enable evacuation of the space between the plunger element and the cap-bladder assembly in the cylindrical body.
Abstract:
Various methods for optimizing coating of medical devices, such as balloon catheters are disclosed. One method configures catheter balloon folds based on balloon diameter and volume. Other methods include using a specifically-sized protective sheath, using a vacuum, using pressure, pulling the balloon through a coating solution, using at least one spacer or a wick between at least one fold for metering a therapeutic coating into the folds of the balloon, placing an intermediate layer between the balloon and the therapeutic coating, placing a soluble film having a therapeutic agent around the catheter balloon or inside the folds, and any combination thereof. Balloon catheters and catheter balloons having a specific folding configuration, a specifically-sized protective sheath, an intermediate layer, or a soluble film are also disclosed.
Abstract:
Various methods for optimizing coating of medical devices, such as balloon catheters are disclosed. One method configures catheter balloon folds based on balloon diameter and volume. Other methods include using a specifically-sized protective sheath, using a vacuum, using pressure, pulling the balloon through a coating solution, using at least one spacer or a wick between at least one fold for metering a therapeutic coating into the folds of the balloon, placing an intermediate layer between the balloon and the therapeutic coating, placing a soluble film having a therapeutic agent around the catheter balloon or inside the folds, and any combination thereof. Balloon catheters and catheter balloons having a specific folding configuration, a specifically-sized protective sheath, an intermediate layer, or a soluble film are also disclosed.
Abstract:
An integrated radiopharmaceutical patient treatment system is disclosed including a patient support platform with an associated patient stimulus apparatus, an imager proximate the patient support platform, a radiopharmaceutical fluid delivery system for infusing a radiopharmaceutical fluid into a patient, a patient monitor to be associated with a patient, and an integrated system controller operably associated with the patient stimulus apparatus, imager, radiopharmaceutical fluid delivery system, and patient monitor to control and coordinate their operations. Within the patient treatment system the radiopharmaceutical fluid delivery system may be included comprising a radionuclide supply module, a radiopharmaceutical processing module, a quality control module, a patient injection module, and a controller. A hazardous fluid handling system including a docking station and a hazardous fluid transport device adapted to detachably dock with the docking station is further disclosed.
Abstract:
An integrated radiopharmaceutical patient treatment system is disclosed including a patient support platform with an associated patient stimulus apparatus, an imager proximate the patient support platform, a radiopharmaceutical fluid delivery system for infusing a radiopharmaceutical fluid into a patient, a patient monitor to be associated with a patient, and an integrated system controller operably associated with the patient stimulus apparatus, imager, radiopharmaceutical fluid delivery system, and patient monitor to control and coordinate their operations. Within the patient treatment system the radiopharmaceutical fluid delivery system may be included comprising a radionuclide supply module, a radiopharmaceutical processing module, a quality control module, a patient injection module, and a controller. A hazardous fluid handling system including a docking station and a hazardous fluid transport device adapted to detachably dock with the docking station is further disclosed.
Abstract:
A method for the real-time visualization and detection of extravasated and or infiltrated fluid and substances, including blood, that occur near the cannulation site of an injection is described wherein illumination or transillumination with near infrared light is used to image the contrast in real-time between absorbing and nonabsorbing subdermal and intradermal structures of blood vessels and remaining surrounding tissue, foreign substances and other structures in order to establish a baseline image of the body area of interest, and any new image is monitored and compared with the baseline image to detect the extravasation and/or infiltration of fluids and substances, including blood, around a vein or artery into the subdermal or intradermal tissue.
Abstract:
A system for injecting an injectate into patient includes a first pressurizable container for holding the injectate; a patient interface in fluid connection with the first pressurizable container, the patient interface being adapted to pass the injectate into tissue of the patient; a powered injector in operative connection with the first pressurizable container to pressurize the injectate; a controller system in operative connection with powered injector; and a stereotactic localization frame adapted to be placed in operative connection with the patient interface to assist in controlling localization of the patient interface. A system for processing cells (and/or other injectate components) includes a container and a plunger adapted to be slidably positioned within the container. The system includes at least one inlet port through which a fluid can enter the system and at least one effluent port through which an effluent can exit the system. The plunger section forms a sealing engagement with the inner wall of the container such that rearward motion of the plunger is adapted to draw fluid into the system via the inlet and forward motion of the plunger is adapted to force effluent out of the system via the effluent port.
Abstract:
The present invention relates to an electronic circuit and an array of such circuits for precisely measuring small amounts or small changes in the amount of charge, voltage, or electrical currents. One embodiment of the present invention provides an electronic circuit for measuring current or charge that can be used with a variety of sensing media (including high impedance sensing media) that produce a signal by either charge or current production or induction in response to physical phenomena occurring within the sensing media. In another embodiment, the voltage level (bias) of either the sensing or reference electrode can be switched relative to the other upon receipt of a triggering pulse. This changes the polarity of the electric field to cause charge of the opposite polarity to be driven to the sensing electrode, thereby eliminating the need to electrically connect a discharge path to the sensing electrode to clear the charge accumulated at the sensing electrode. Alternate preferred embodiments of the invention permit use of the invention with sensing media other than ion chambers, including piezoelectric materials, pyroelectric materials, photoelectric materials, liquid electrochemical materials, vacuum/gas/liquid/solid charge conduction materials, inductive pick-ups or coils, electric field measuring antennas, or even a surface with charge emission or work function changes.
Abstract:
Various methods for optimizing coating of medical devices, such as balloon catheters are disclosed. One method configures catheter balloon folds based on balloon diameter and volume. Other methods include using a specifically-sized protective sheath, using a vacuum, using pressure, pulling the balloon through a coating solution, using at least one spacer or a wick between at least one fold for metering a therapeutic coating into the folds of the balloon, placing an intermediate layer between the balloon and the therapeutic coating, placing a soluble film having a therapeutic agent around the catheter balloon or inside the folds, and any combination thereof. Balloon catheters and catheter balloons having a specific folding configuration, a specifically-sized protective sheath, an intermediate layer, or a soluble film are also disclosed.
Abstract:
A hazardous fluid transport container and a hazardous fluid delivery system are disclosed. The hazardous fluid transport container includes a housing enclosing an at least partially shielded enclosure. First and second fluid path elements are disposed within the housing, with the first fluid path element and second fluid path element fluidly coupled together. A pump unit may be provided for dispensing fluid from the first and second fluid path elements optionally into a third fluid path element. Also, methods for priming the hazardous fluid transport container and for mitigating laminar flow injection bolus spreading are disclosed. Additionally, disclosed is a radioactive fluid transport container for a syringe or other container. The radioactive fluid transport container allows the syringe or container to be used in an injection procedure without removal from the container.