Abstract:
Disclosed is a fastening system that is adapted for securing a sheathing board to an associated framing member. The system includes a feedband for retaining a series of fasteners and a powered drill for sequentially driving the fasteners. The feedband is made from a membrane of a polymeric compound. As the fastener is driven into the sheathing board, a portion of the membrane tears away from the surrounding feedband and becomes seated beneath the fastener. This acts to seal the penetration point and prevent water intrusion and otherwise prevents deterioration of the sheathing board.
Abstract:
A method of manufacture of multilayer gypsum board, and a gypsum additive delivery system, including wet gypsum board passing through a board forming station in which additives are delivered to one or more layers of a multi layered gypsum board panels, such as engineered polymers, providing a better and more water resistance surface. Preferably, the gypsum board has a first layer of a mixture of set gypsum having an outer surface and a polymeric compound or wax emulsion additive entrained therein and impregnated in a thin sheet of randomly aligned inorganic fibers to essentially encase the core gypsum within two facing layers.
Abstract:
A composition and process for manufacture thereof used in hybrid inventive building materials comprising Syngenite (K2Ca(SO4)2.H2O) and Struvite-K (KMgPO4.6H2O). Starting constituents include magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate), mixed in predetermined ratios, cause reactions to proceed through multiple phases, which reactions variously are proceeding simultaneously and in parallel. Variables, e.g., water temperature, pH, mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined weight percent and specified ratios of Struvite-K and Syngenite are provided for building products used for specified purposes. Reactions are optimized in stoichiometry and additives to reduce the combined heat of formation to non-destructive levels. Various additives help control and guide reactions. Building products, such as board panels, include the resultant composition. A significant amount of the composition is disposed adjacent a building panel face.
Abstract:
A composition and process for manufacture thereof used in hybrid inventive building materials comprising Syngenite (K 2 Ca(SO 4 ) 2 .H 2 O) and Struvite-K (KMgPO 4 .6H 2 O). Starting constituents include magnesium oxide (MgO), monopotassium phosphate (MKP) and stucco (calcium sulfate hemihydrate), mixed in predetermined ratios, cause reactions to proceed through multiple phases, which reactions variously are proceeding simultaneously and in parallel. Variables, e.g., water temperature, pH, mixing times and rates, have been found to affect resultant reaction products. Preferred ratios of chemical constituents and manufacturing parameters, including predetermined weight percent and specified ratios of Struvite-K and Syngenite are provided for building products used for specified purposes. Reactions are optimized in stoichiometry and additives to reduce the combined heat of formation to non-destructive levels. Various additives help control and guide reactions. Building products, such as board panels, include the resultant composition. A significant amount of the composition is disposed adjacent a building panel face.
Abstract:
Discloses is an apparatus and method for utilizing air along a building board forming line for the purpose of reducing friction between the board and the underlying forming tables. The device employs a series of air nozzles that are formed within the face of the forming tables. An air source delivers pressurized air to the nozzles. As completed or partially completed boards travel along the forming tables, an air cushion is created to reduce the friction between the board and the underlying table. The pressurized air can also be used to transport the boards and promote the even distribution of slurry during formation. The various components of the present invention, and the manner in which they interrelate, are described in greater detail hereinafter.
Abstract:
Disclosed is a composite building board construction. The board includes a set gypsum core and a fibrous mat that is pre-coated with a cementitious layer. A thermoplastic coating is then applied over the cementitious layer. Additives can be added to one or more of the layers to provide enhanced performance characteristics. Also discloses are various manufacturing techniques for applying a hot melt thermoplastic coating to cementitious layer.
Abstract:
A coating method for gypsum board comprising forming a gypsum board entrained with polymer additive in a surface layer, applying a preferably acrylic primary coating, curling and drying, and passing the gypsum board through a first roll coater wherein a second fluid coating is deposited over the primary layer, which forms a chemical bond with the entrained polymer, and a chemical bond with the second fluid coating. A coating material which can form copolymer bonds with the second coating is then deposited on the same, then dried and cured, resulting in coated gypsum board having a low surface tension surface, essentially impermeable to water, vapor or moisture penetration. In another aspect, at least one polymer additive entrained in a surface layer of the gypsum board and capable of forming a copolymer bond with a second coating is applied either on-line or off-line from the gypsum board formation line.
Abstract:
A method of manufacture of multilayer gypsum board, and a gypsum additive delivery system, including wet gypsum board passing through a board forming station in which additives are delivered to one or more layers of a multi layered gypsum board panels, such as engineered polymers, providing a better and more water resistance surface. Preferably, the gypsum board has a first layer of a mixture of set gypsum having an outer surface and a polymeric compound or wax emulsion additive entrained therein and impregnated in a thin sheet of randomly aligned inorganic fibers to essentially encase the core gypsum within two facing layers.
Abstract:
Disclosed is a composite building board construction. The board includes a set gypsum core and a fibrous mat that is pre-coated with a cementitious layer. A thermoplastic coating is then applied over the cementitious layer. Additives can be added to one or more of the layers to provide enhanced performance characteristics. Also discloses are various manufacturing techniques for applying a hot melt thermoplastic coating to cementitious layer.
Abstract:
A gypsum board panel having two facing main surfaces and machine edge surfaces, the board including an outer gypsum layer in which a polymer additive has been entrained, and the machine edges being shaped to have a three-dimensional feature, such that the features are complementary, and one machine edge surface can engage the complementary surface of the machine edge of an adjacent gypsum board panel. The three-dimensional features may include a triangular, in cross- section, ridge, or a rectangular ledge, or a concave edge, with a corresponding complementary groove or depression on the opposed edge for engagement with the edge of an adjacent board. A plurality of fastener plugs, taking the form of, for example strips or dots, can be disposed on the outer facing surface of the board to provide an entry point for penetration of a fastener, such as a nail or screw, and a layer of sheathing material, for example a covering polymeric coating, is optionally disposed over the outer board panel surface to further enhance the moisture repellent properties of the board.