Abstract:
The present invention relates to a process for manufacturing a structure comprising a germanium layer (3) on a support substrate (1), characterised in that it comprises the following steps: (a) formation of an intermediate structure (10) comprising said support substrate (1), a silicon oxide layer (20) and said germanium layer (3), the silicon oxide layer (20) being in direct contact with the germanium layer (3), (b) application to said intermediate structure (10) of a heat treatment, in a neutral or reducing atmosphere, at a defined temperature and for a defined time, to diffuse at least part of the oxygen from the silicon oxide layer (20) through the germanium layer (3).
Abstract:
The invention relates to a method for manufacturing a semiconductor device, characterized in that it comprises: a first step (E1) consisting in forming a support substrate (1) comprising a first porous layer (2), a second porous layer (9), with a porosity lower than the porosity of the first layer (2), a second step (E2) consisting in providing a donor substrate (4), comprising, a useful layer (6), a third step (E3) consisting of bonding the support substrate (1) and the donor substrate (4), transferring at least a portion of the useful layer (6) to form a semiconductor device (15), a fourth step (E4) consisting of treating said semiconductor device (15) in such a way as to deform by dilation or contraction at least the first porous layer, said deformation inducing strain in the useful layer (6).
Abstract:
The invention relates to a method for manufacturing compound material wafers, in particular, silicon on insulator type wafers, comprising the steps: Providing an initial donor substrate, forming an insulating layer over the initial donor substrate, forming a predetermined splitting area in the initial donor substrate, attaching the initial donor substrate onto a handle substrate and detaching the donor substrate at the predetermined splitting area, thereby transferring a layer of the initial donor substrate onto the handle substrate to form a compound material wafer. In order to be able to reuse the donor substrate more often, the invention proposes to carry out the thermal treatment step to form the insulating layer at a temperature of less than 95O0C, in particular, less than 9000C, preferably at 85O0C. The invention also relates to a silicon on insulator type wafer manufactured according to the inventive method.
Abstract:
The invention relates to a process of treating a structure for electronics or optoelectronics, the structure comprising successively: - a substrate, - a dielectric layer having a thermal conductivity substantially higher than the thermal conductivity of an oxide layer made of an oxide of a semiconductor material, - an oxide layer made of an oxide of the said semiconductor material, - a thin semiconductor layer made of said semiconductor material, characterized in that it comprises a heat treatment of the structure in an inert or reducing atmosphere with a temperature value and a duration chosen for inciting an amount of oxygen of the oxide layer to diffuse through the semiconductor layer so that the thickness of the oxide layer decreases by a determined value. The invention also relates to a process of manufacturing a structure for electronics or optoelectronics comprising the said heat treatment.
Abstract:
A quantum well thermoelectric component for use in a thermoelectric device based on the thermoelectric effect, • comprising a stack (1 ) of layers (3, 4) of two materials respectively made on the basis of silicon and silicon-germanium, • the first of said two materials, made on the basis of silicon, defining a barrier semiconductor material and • the second of said two materials, made on the basis of silicon-germanium, defining a conducting semiconductor material, • said barrier semiconductor material having a band gap higher than the band gap of said conducting semiconductor material, wherein • the conducting semiconductor material is an alloy comprising silicon, germanium and at least a lattice matching element, said lattice matching element(s) being present in order to control a lattice parameter mismatch between the barrier layer (3) made of the barrier semiconductor material and the conducting layer (4) made of the conducting semiconductor material.
Abstract:
The invention relates to a process for treating a semiconductor-on- insulator type structure, successively comprising a support substrate (1 ), an oxide layer (2) and a thin semiconductor layer (3), said process comprising the following steps: (a) formation of a silicon nitride or silicon oxinitride mask (4) on the thin semiconductor layer (3), so as to define so-called exposed areas (3a) at the surface of said layer (3), which are not covered by the mask (40, and which are arranged in a desired pattern, (b) application of a heat treatment in a neutral or controlled reducing atmosphere, and under controlled conditions of temperature and time, so as to induce at least a portion of the oxygen of the oxide layer (2) to diffuse through the thin semiconductor layer (3), thereby resulting in the controlled reduction in the oxide thickness in the areas (2a) of the oxide layer corresponding to said desired pattern. In step (a), the mask (4) is formed so as to be at least partially buried in the thickness of the thin semiconductor layer (3).
Abstract:
The invention relates to methods for manufacturing compound material wafers, in particular silicon on insulator type wafers, comprising the steps of providing a donor substrate, forming an insulating layer, providing a handle substrate, creating a predetermined splitting area in the donor substrate, attaching the donor substrate to the handle substrate and detaching at the predetermined splitting area to achieve the compound material wafer. In order to be able to more often reuse the remainder of the donor substrate in subsequent manufacturing runs, the invention is characterized by the fact that the insulating layer provided on the donor substrate has a maximum thickness of 500 A, or that the insulating layer is provided by deposition or only on the handle substrate. In addition, a silicon on silicon type wafer fabrication method is also disclosed.
Abstract:
The present invention relates to method of fabricating a (110) oriented silicon substrate and to a method of fabricating a bonded pair of substrates comprising such a (110) oriented silicon substrate. The invention further relates to a silicon substrate with (110) orientation and to a bonded pair of silicon substrates comprising a first silicon substrate with (100) orientation and a second silicon substrate with (110) orientation. It is the object of the present invention to provide methods and substrates of the above mentioned type with a high efficiency wherein the formed (110) substrate has at least near and at its surface virtually no defects. The object is solved by a method of fabricating a silicon substrate with (110) orientation and by a method of fabricating a bonded pair of silicon substrates, comprising the steps of providing a basic silicon substrate with (110) orientation, said basic silicon substrate having a roughness being equal or less than 0.15 nm RMS in a 2x2 μm2 or a 10x10 μm2 scan, and depositing epitaxially a silicon layer with (110) orientation on the basic silicon substrate at a pressure between 40 Torr to 120 Torr, preferably 80 Torr.and at a temperature between about 10000C and about 12000C and using trichlorosilane or dichlorosilane as silicon precursor gas.
Abstract:
The invention relates to a method for fabricating a composite structure having heat dissipation properties greater than a bulk single crystal silicon structure having the same dimensions, the structure comprising a support substrate, a top layer and an oxide layer between the support substrate and the top layer, the method comprising the steps of: a) providing a top layer made of a crystalline material, b) bonding the top layer with a support substrate made of a polycrystalline material having high heat dissipation properties, such that an oxide layer is formed at the bonding interface, in order to obtain said structure, characterized in that it further comprises a heat treatment of the structure in an inert or reducing atmosphere at a predetermined temperature and a predetermined duration to increase the heat dissipation properties by dissolving at least a part of the oxide layer.
Abstract:
Methods for forming semiconductor structures comprising a layer transferred from a donor substrate are provided in which the resulting structure has improved quality with respect of defects, and resulting structures therefrom. For example, a semiconductor on insulator (SeOI) structure can be formed by a method comprising: - providing a donor substrate (1) having a first density of vacancy clusters; - providing an insulating layer (3); - transferring a thin layer (10) from the donor substrate (1) to a support substrate (2) with the insulating layer (3) thereon; - curing the transferred thin layer (10) to reduce the first density of vacancy clusters to a second density; and being characterized in that the step of providing an insulating layer (30) comprises providing an oxygen barrier layer (4) to be in contact with the transferred thin layer (10), said oxygen barrier layer limiting diffusion of oxygen towards the thin layer during the curing.