Abstract:
The present invention relates to PTHrP-binding single-chain 3-stranded alpha-helical coiled coil molecules, denoted 'Alphabodies', nucleic acids encoding said Aiphabodies, host cells comprising said nucleic acids, as well as pharmaceutical compositions comprising said Alphabodies, and methods for the treatment, prevention and diagnosis of cancer using said Alphabodies.
Abstract:
The present invention relates to peptides which are suitable for inducing an immune response to RSV and to the use of said peptides for the preparations of vaccines, compositions and in methods of diagnosis.
Abstract:
The present invention relates to a method for structure-based prediction of properties of peptides and peptide analogs in complex with major histocompatibility (MHC) class I and class II molecules. The said properties mainly relate to the three-dimensional structure of an MHC/peptide complex and the binding affinity of a peptide for an MHC receptor. The invention further relates to a computer program and a device therefor. The invention further relates to data produced by a method of the invention. The invention further relates to peptides and peptide analogs predicted to bind to target-MHC molecules. The present invention thus relates to the field of immunology, with possible applications in manufacture of vaccinates, de-immunization of proteins, and manufacture of therapeutic agents, especially immunotherapeutic agents.
Abstract:
Alphabodies that specifically bind to cytokines or growth factor and/or their receptors, as well as polypeptides that comprise or essentially consist of such Alphabodies. Further nucleic acids encoding such Alphabodies; methods for preparing such Alphabodies and polypeptides; host cells expressing or capable of expressing such Alphabodies and polypeptides; compositions, and in particular pharmaceutical compositions, that comprise such Alphabodies, polypeptides, nucleic acids and/or host cells; and uses of such Alphabodies or polypeptides, nucleic acids, host cells and/or compositions, in particular for prophylactic, therapeutic or diagnostic purposes.
Abstract:
The present invention relates to PTHrP-binding single-chain 3-stranded alpha-helical coiled coil molecules, denoted 'Alphabodies', nucleic acids encoding said Aiphabodies, host cells comprising said nucleic acids, as well as pharmaceutical compositions comprising said Alphabodies, and methods for the treatment, prevention and diagnosis of cancer using said Alphabodies.
Abstract:
The present invention related to peptides which are suitable for inducing an immune response to HBV and to the use of said peptides for the preparations of vaccines, compositions and in methods of diagnosis. Said sequences of said peptides are predicted using a method of the invention.
Abstract:
The present invention is related to an isolated polypeptide micro-scaffold displaying immunoglobulin CDR2 or CDR3 polypeptide sequences, comprising a CDR2 or CDR3 polypeptide sequence interconnecting fragments of the adjacent framework polypeptide sequences, which are arranged to form two anti-parallel β-strands. The present invention is further related to a method to search, select or screen for immunoglobulin CDR2 or CDR3 polypeptide sequences that bind to a given antigen or mixture of antigens, comprising the steps of: Creating a CDR library with the method of claim 13 from the genetic information of an individual or group of individuals; Select a CDR, which binds to said antigen or mixture of antigens.
Abstract:
A method for generating information related to the molecular structure of a biomolecule, comprising the steps of: (a) receiving a three-dimensional representation of said molecular structure, comprising a first set of residue portions and a template; and (b) modifying the representation of step (a) by at least one optimization cycle. Each optimization cycle comprises the steps of: (b1) perturbing a first representation of the molecular structure by modifying the structure of one or more of the first set of residue portions; (b2) relaxing the perturbed representation by optimizing the structure of one or more of the non-perturbed residue portions of the first set with respect to the one or more perturbed residue portions; (b3) evaluating the perturbed and relaxed representation of the molecular structure by using an energetic cost function and replacing the first representation by the perturbed and relaxed representation if the latter's global energy is more optimal than that of the first representation; and the method further comprises the steps of (c) terminating the optimization process according to step (b) when a predetermined termination criterion is reached; and (d) outputting to a storage medium or to a consecutive method a data structure comprising information extracted from step (b).
Abstract:
The invention provides methods for the production of single-chain Alphabody polypeptides having detectable binding affinity for, or detectable in vitro activity on, a viral protein of interest, which comprising the step of producing a single-chain Alphabody library comprising at least 100 different-sequence single-chain Alphabody polypeptides, wherein said Alphabody polypeptides differ from each other in at least one of a defined set of 5 to 20 variegated amino acid residue positions, and wherein said variegated amino acid residue positions are located at specific positions in one or more of the alpha-helices of the Alphabody or the linker fragment connecting two consecutive alpha-helices of the Alphabody polypeptides. The invention further provides Alphabodies obtainable by the methods of the invention and uses thereof.
Abstract:
The invention provides single-chain Alphabody library comprising at least 100 different- sequence single-chain Alphabody polypeptides, wherein said Alphabody polypeptides differ from each other in at least one of a defined set of 5 to 20 variegated amino acid residue positions, and wherein at least 70% but not all of said variegated amino acid residue positions are located either in the loop, helix surface or linker region of the Alphabody. The invention further provides methods for use of the Alphabody libraries and Alphabodies obtainable by the methods of the invention.