Abstract:
Activated carbon powders for hybrid supercapacitor-battery systems may be formed from a corncob or an egg white. In an example of a method for making an example of the activated carbon powder, a corncob is dried and ground to form a precursor powder. The precursor powder is heat treated under an inert gas flow until a predetermined temperature is reached. While the predetermined temperature is maintained, the inert gas flow is replaced with an ammonia gas (NH 3 ) flow. With this method, a nitrogen-doped activated carbon powder is formed.
Abstract:
The present invention relates to a compound represented by formula (I): and pharmaceutically acceptable salts thereof. The compounds of formula I are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.
Abstract:
The present invention is related to the development of compounds and methods for inhibiting viral infection in a mammal. A pseudotype virus was developed for use in a high throughput assay for identifying nonpeptidic small molecule inhibitors that prevent viral entry into a host cell.
Abstract:
Novel compounds of the structural formula (I) are activators of AMP-protein kinase and may be useful in the treatment, prevention and suppression of diseases mediated by the AMPK activated protein kinase. The compounds of the present invention may be useful in the treatment of Type 2 diabetes, hyperglycemia, metabolic syndrome, obesity, hypercholesterolemia, and hypertension.
Abstract:
Novel compounds of the structural formula (I) are activators of AMP-protein kinase and may be useful in the treatment, prevention and suppression of diseases mediated by the AMPK-activated protein kinase. The compounds of the present invention may be useful in the treatment of Type 2 diabetes, hyperglycemia, metabolic syndrome, obesity, hypercholesterolemia, and hypertension.
Abstract:
Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.
Abstract:
A method and system for completing the authentication process in a second communication network (such as Wi-Fi or WiMAX) utilizes a user credential of a first communication network, such as GSM, UMTS, CDMA, or LTE. Preferably, the user credential is a SIM card, a USIM card, a R-UIM card, or a functionally similar component. The system includes a client and an authentication platform that retrieves Service State information of the user credential in the first communication network and passes the information to the authentication platform of the second communication network. The client is granted access to the second communication network after the authentication platform validates the client=s service and subscription status with the first communication network.
Abstract:
Novel compounds of structural formula (I) are activators of AMP-protein kinase and are useful in the treatment, prevention and suppression of diseases mediated by the AMPK-activated protein kinase. The compounds of the present invention are useful in the treatment of Type 2 diabetes, hyperglycemia, metabolic syndrome, obesity, hypercholesterolemia, and hypertension.
Abstract:
A method and system for completing the authentication process of a user device in a second communication network (such as Wi-Fi or WiMAX) utilizes the user credential (such as a SIM card, a USIM card, or a RUIM card) of a first communication network (such as GSM, CDMA, EDGE, or LTE). A client, such as a software module, executes on the wireless device. An authentication platform retrieves the SIM card credential information in the first communication network and passes the information to the authentication platform of the second communication network, thereby granting the client access to the second communication after the authentication platform validates with the first communication network.
Abstract:
Lithium ion batteries can be activated and then cycled to exploit a moderate fraction of the discharge cycling capacity such that the discharge capacity and average discharge voltage stay within initial values for thousands of cycles. The superior cycling performance has been achieved at relatively high discharge rates and for practical battery formats. Lithium ion battery performance can also be achieved with superior cycling performance with partially activated batteries such that good discharge capacities can be exploited for many thousands of cycles before the discharge capacity and average discharge voltage drops more than 20% from initial values. The positive electrode active material can be a lithium rich metal oxide. The activation of the battery can comprise phase changes of the active materials. As described herein, the phase changes can be manipulated to exploit a reasonable fraction of the available high capacity of the material while providing outstanding cycling stability.