Abstract:
The present invention is directed to methods for providing a polyelectrolyte multilayer film at a liquid-liquid interface. Such methods include steps of sequentially-depositing layers of cationic and anionic polyelectrolytes at a liquid- liquid interface that is formed between immiscible first and second liquids whereby a polyelectrolyte multilayer film is provided at the liquid-liquid interface. In certain preferred embodiments, the first liquid is an aqueous solution and the second liquid is a liquid crystal. In alternative embodiments, the first liquid is an aqueous solution and the second liquid is an oil. The invention further encompasses polyelectrolyte multilayer films provided by the disclosed methods as well as applications utilizing such materials.
Abstract:
The invention provides polyelectrolyte hydrogels, blends, and multilayers for the controlled release of bioactive agents from implantable medical devices coated with or containing such media.
Abstract:
The present invention is directed to liquid crystalline substrates useful in the culture of cells and methods of their use. In certain embodiments, the invention provides methods and devices for imaging changes (e.g., reorganization) of extracellular matrix components by living cells.
Abstract:
The invention provides polyelectrolyte hydrogels, blends, and multilayers for the controlled release of bioactive agents from implantable medical devices coated with or containing such media.
Abstract:
The present invention is directed to methods for providing a polyelectrolyte multilayer film at a liquid-liquid interface. Such methods include steps of sequentially-depositing layers of cationic and anionic polyelectrolytes at a liquid- liquid interface that is formed between immiscible first and second liquids whereby a polyelectrolyte multilayer film is provided at the liquid-liquid interface. In certain preferred embodiments, the first liquid is an aqueous solution and the second liquid is a liquid crystal. In alternative embodiments, the first liquid is an aqueous solution and the second liquid is an oil. The invention further encompasses polyelectrolyte multilayer films provided by the disclosed methods as well as applications utilizing such materials.
Abstract:
Silane-functionalized hydrophobic a(1→4)glucopyranose polymers and polymeric matrices are described. Biodegradable matrices can be formed from hydrophobic a(1→4)glucopyranose polymers with reactive pendent silyl ether groups. Reaction of the silyl ether groups provides improved matrix formation through bonding to a device surface of a device, polymer-polymer crosslinking, or both. Biodegradable matrices can be used for the preparation of implantable and injectable medical devices, including those that release a bioactive agent.
Abstract:
The invention is directed to medical device coatings, such as coated guidewires and catheters, containing a visualization moiety providing color to the coating in ambient or applied light. The coating allows for visual or machine inspection of coating properties such as uniformity of coverage. In some embodiments the coatings include the visualization moiety and an activated UV photogroup, which is used to provide covalent bonding in the coating. The visualization moiety can be in particulate form and entrained in the coating, or can be covalently bonded to the hydrophilic polymer backbone. In other embodiments the visualization moiety includes a stilbene chemical group. Exemplary coatings include a hydrophilic vinyl pyrrolidone polymer, which can provide lubricity to the device surface, along with the colored properties.
Abstract:
The present invention is directed to liquid crystalline substrates useful in the culture of cells and methods of their use. In certain embodiments, the invention provides methods and devices for imaging changes (e.g., reorganization) of extracellular matrix components by living cells.