Abstract:
An aircraft system and method with a first counterweight rotating balancing rotor including holding stepping inboard magnets and outboard mass concentration, and a second counterweight rotating balancing rotor including holding stepping inboard magnets and outboard mass concentration. The system includes an.inboard electromagnetic coil driver with a first inboard electromagnetic coil, and a second inboard electromagnetic coil, the inboard electromagnetic coil driver and the first counterweight balancing rotor and the second counterweight balancing rotor centered around the aircraft propeller shaft rotating machine member with the first inboard electromagnetic coil proximate the first inboard magnets of the first counterweight balancing rotor, with the inboard electromagnetic coil driver proximate the rotation axis of the aircraft propeller shaft rotating machine member and the first counterweight balancing rotor outboard of the inboard electromagnetic coil driver with the first inboard electromagnetic coil generating a electromagnetic field to electromagnetically step the first inboard magnets of the at least first counterweight balancing rotor to electromagnetically actuate rotational movement of the first counterweight balancing rotor around the rotating machine member and relative to the inboard electromagnetic coil driver to a first rotor held balancing position. The second inboard electromagnetic coil is proximate the second counterweight balancing rotor, with the second inboard electromagnetic coil proximate the second inboard magnets of the second counterweight balancing rotor, wherein the second inboard electromagnetic coil generates an electromagnetic field to electromagnetically step the second inboard magnets of the second counterweight balancing rotor to electromagnetically actuate rotational movement of the second counterweight balancing rotor around the rotation axis and relative to the inboard electromagnetic coil driver and to a second rotor held position.
Abstract:
The present invention provides a method for building a component for an electrical rotating machine and comprises: providing powdered magnetic material; providing electrically conductive material; positioning the powdered magnetic material and the electrically conductive material within a mold functional to provide the materials with the required dimensions after application of a hot isostatic pressing (HIP) procedure; and applying at least one HIP procedure to the materials in the mold. Temperatures and pressures of the process are chosen to ensure that the electrically conducting and magnetic portions of the component are bonded without the materials seeping into each other. In one aspect the present invention thus provides a method for building small compact motor systems using motor components formed from pressed powder. A technical advantage of this approach is that the component has uniform grain structure and thus consistent magnetic and structural properties. The motor may be located inside a vehicle drive wheel, as it is equipped to be a drive motor providing the necessary torque with reasonable system mass. The motor systems of the invention may utilize polyphase electric motors, and are preferably connected to appropriate drive systems via mesh connections, to provide variable V/Hz ratios.
Abstract:
The invention relates to an accessory (10) for a motor vehicle visor (30) which includes a tinted, transparent sheet (12) element and mounting means whereby it can be mounted on a vehicle visor. In its mounted configuration on a vehicle visor it is displaceable between a first position, in which it is located within the perimeter of the visor, and a second position, in which it extends from the edge of the visor remote from the edge about which the visor is pivotally displaceable. With the visor in its operative configuration and the sheet element in its second position, the sheet element can serve to shield a vehicle driver's eyes against the rays of a low setting sun, a rising sun and oncoming vehicle headlights, while visibility through and around the sheet element still permits clear road visibility for driving purposes.
Abstract:
The present invention relates to methods of sensitizing neoplastic cells to irradiation by using oncolytic viruses, particularly reoviruses. Also provided are methods of treating or ameliorating a tumor with a combination of oncolytic viruses and radiotherapy.
Abstract:
An aircraft system and method with a first counterweight rotating balancing rotor including holding stepping inboard magnets and outboard mass concentration, and a second counterweight rotating balancing rotor including holding stepping inboard magnets and outboard mass concentration. The system includes an.inboard electromagnetic coil driver with a first inboard electromagnetic coil, and a second inboard electromagnetic coil, the inboard electromagnetic coil driver and the first counterweight balancing rotor and the second counterweight balancing rotor centered around the aircraft propeller shaft rotating machine member with the first inboard electromagnetic coil proximate the first inboard magnets of the first counterweight balancing rotor, with the inboard electromagnetic coil driver proximate the rotation axis of the aircraft propeller shaft rotating machine member and the first counterweight balancing rotor outboard of the inboard electromagnetic coil driver with the first inboard electromagnetic coil generating a electromagnetic field to electromagnetically step the first inboard magnets of the at least first counterweight balancing rotor to electromagnetically actuate rotational movement of the first counterweight balancing rotor around the rotating machine member and relative to the inboard electromagnetic coil driver to a first rotor held balancing position. The second inboard electromagnetic coil is proximate the second counterweight balancing rotor, with the second inboard electromagnetic coil proximate the second inboard magnets of the second counterweight balancing rotor, wherein the second inboard electromagnetic coil generates an electromagnetic field to electromagnetically step the second inboard magnets of the second counterweight balancing rotor to electromagnetically actuate rotational movement of the second counterweight balancing rotor around the rotation axis and relative to the inboard electromagnetic coil driver and to a second rotor held position.
Abstract:
The invention relates to systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.
Abstract:
The present invention relates to a method for removing neoplastic cells from a mixed cellular composition, which is outside of a living organism, by using a virus which selectively infect and kill neoplastic cell. A variety of viruses can be used in this method to remove neoplastic cells for different purposes, for example, to purge hematopoietic stem cells prior to transplantation. Also provided are compositions prepared according to this method, and kits comprising a combination of viruses which are useful in this invention.
Abstract:
Airfoil assemblies and methods of using them are provided to accelerate air flow relative to the airfoil assemblies and to improve laminar air flow over airfoils. The airfoil may include a cathode disposed near a leading portion of the airfoil to ionize on rushing air and for initiating an electric field. An anode disposed near an opposite portion of the airfoil completes the electric field to accelerate ionized air flowing relative to the airfoil, whereby ionized positively charged air particles tend to separate and accelerate continuously toward the anode in a substantially smooth laminar path of travel uninterruptedly. An air ionizing antenna may be employed for radiating an electromagnetic field transversely to the electric field to cause the electromagnetic field to ionize additional air flowing relative to the airfoil.
Abstract:
A neonatal endotracheal tube stabilizer has a tube cradle, a tube fixation element attached to said tube cradle and a stabilization bar having a plurality of engagement elements. The stabilization bar extends on either side of the tube cradle to engage two cheek pads. The cheek pads each have a releasable engagement interface dimensioned to engage the engagement elements of the stabilization rod in at least one engaged position. When so engaged, the cradle firmly holds the endotracheal tube in a position selected by a health care provider.
Abstract:
The present invention provides a method for building a component for an electrical rotating machine and comprises: providing powdered magnetic material; providing electrically conductive material; positioning the powdered magnetic material and the electrically conductive material within a mold functional to provide the materials with the required dimensions after application of a hot isostatic pressing (HIP) procedure; and applying at least one HIP procedure to the materials in the mold. Temperatures and pressures of the process are chosen to ensure that the electrically conducting and magnetic portions of the component are bonded without the materials seeping into each other. In one aspect the present invention thus provides a method for building small compact motor systems using motor components formed from pressed powder. A technical advantage of this approach is that the component has uniform grain structure and thus consistent magnetic and structural properties. The motor may be located inside a vehicle drive wheel, as it is equipped to be a drive motor providing the necessary torque with reasonable system mass. The motor systems of the invention may utilize polyphase electric motors, and are preferably connected to appropriate drive systems via mesh connections, to provide variable V/Hz ratios.