Abstract:
A method of adaptive image acquisition includes obtaining a guide image of patient tissue; receiving an intraoperative image of a portion of the patient tissue from an imaging instrument; and storing the intraoperative image. The method includes comparing the intraoperative image with the guide image to identify at least one region of the guide image matching the intraoperative image; and determining whether the at least one region identified meets at least one accuracy criterion. When the at least one region meets the at least one accuracy criterion, the guide image is rendered with an indication of the at least one region on a display. When the at least one region does not meet the at least one accuracy criterion, the method includes receiving and storing a further intraoperative image; combining the further intraoperative image with the intraoperative image; and repeating the comparing and determining.
Abstract:
The present disclosure discloses anatomical phantoms having one or more distinct regions spectroscopically differentiated from each other by inclusion of spectroscopically active components each having a distinct fluorescence/emission/scattering spectrum. The distinct regions may represent different anatomical components of the corresponding real anatomical part and/or tumor mimics (or other diseased tissue) and different anatomical components of the corresponding real anatomical part, or just tumor mimics and a remainder of the anatomical part. The spectroscopically active materials may be dyes such as the cyanine dyes, or spectroscopically active nanoparticles.
Abstract:
System and methods are provided for adaptively and interoperatively configuring an automated arm used during a medical procedure. The automated arm is configured to position and orient an end effector on the automated arm a desired distance and orientation from a target. The end effector may be an external video scope and the target may be a surgical port. The positions and orientations of the end effector and the target may be continuously updated. The position of the arm may be moved to new locations responsive to user commands. The automated arm may include a multi-joint arm attached to a weighted frame. The weighted frame may include a tower and a supporting beam.
Abstract:
A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
Abstract:
Systems and methods are provided for transforming a displayed three-dimensional image corresponding to a position and orientation of a field of view of an imaging probe. A three dimensional image of a tissue in a first co-ordinate space can be displayed. A field of view of an imaging probe in a second co-ordinate space can be configured, where the imaging probe has a plurality of transmitters removably connected to it, the transmitters operable to determine the position and orientation of the field of view relative to the positions of the transmitters in the second co-ordinate space. The first and second co-ordinate spaces can be co-registered, and the position and orientation of the field of view in the second co-ordinate space can be transformed to the first co-ordinate space. The three-dimensional image can be displayed to correspond to the transformed position and orientation of the field of view.
Abstract:
Apparatus and methods are described for substantially immobilizing a breast for use in medical imaging. In an exemplary embodiment, an apparatus for substantially immobilizing a breast is provided, including a first support member connected to a first and second base, the bases capable of engagement with the torso of a patient, the first support member defining an inner area substantially covered by a first membrane. A corresponding second support member, defining a second inner area substantially covered by a second membrane, is engageable to the first support member such that the inner areas are substantially aligned to substantially immobilize a breast, the membranes defining a pocket to receive a breast.
Abstract:
A patient supporting apparatus used in medical imaging technologies has an inventive tabletop and stretcher system. The tabletop has a gap or narrowing of prescribed location and size, for example, more than thirty percent of the width of the tabletop is removed inferior to the patient's pelvis within a region of at least 0.3 meters in length. The stretcher supports the tabletop and includes a gap or narrowing so that the access of the operator's hand, arm, and line of sight is not obstructed from the gap or narrowing of the tabletop.
Abstract:
An optical imaging system for imaging a target during a medical procedure. The imaging system includes an optical assembly including moveable zoom optics and moveable focus optics. The system includes a zoom actuator and a focus actuator for positioning the zoom and focus optics, respectively. The system includes a controller for controlling the zoom and focus actuators independently in response to received control input. The system includes a camera for capturing an image of the target from the optical assembly. The system may be capable of performing autofocus during a medical procedure.
Abstract:
A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
Abstract:
A brain phantom is disclosed which includes an anatomically correct structure with a life-like sulci outer brain structure. The phantom is made of materials that mimic one or both of biomechanical and imaging properties of the human brain. The phantom may be a single phantom or it may be a kit including a biomechanical phantom and a separate imaging phantom. The imaging phantom includes structures which mimic white brain tracks or bundles which can be observed using DTI, and can include a post production DTI image to allow practitioners to practice imaging techniques on in addition to practicing surgical techniques.