摘要:
Provided herein are rechargeable battery (e.g., Li-ion and Li-metal anode) catholytes and electrolyte separators that include a chemically cross-linked polymer and a solvent selected from the group consisting of a nitrile, a dinitrile, or a combination thereof; processes for making and using the same; and rechargeable batteries and electrochemical cells that include high voltage stable catholytes and/or electrolyte separators.
摘要:
The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li 7 La 3 Zr 2 O 12 .
摘要:
Provided herein are electrochemical cells as well as coin cells, can cells, and pouch cells which include these electrochemical cells. The electrochemical cells herein include lithium metal negative electrodes and solid electrolyte separators. The coin cells, can cells, and pouch cells which include the electrochemical cells provide pressure to the electrochemical cells to maintain Ohmic contact between the lithium metal negative electrode and the solid electrolyte separator. Also provided herein are methods of making and using these electrochemical cells, coin cells, can cells, and pouch cells.
摘要:
Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
摘要:
The disclosure set forth herein is directed to battery devices and methods therefor. More specifically, embodiments of the instant disclosure provide a battery electrode that comprises both intercalation chemistry material and conversion chemistry material, which can be used in automotive applications. There are other embodiments as well.
摘要:
In an example, the present invention provides a method for forming a film of material for a solid state battery or other energy storage device. The method includes providing a first precursor species, and providing a second precursor species. The method also includes transferring the first precursor species through a first nozzle and outputting the first precursor species in a first molecular form and transferring the second precursor species through a second nozzle and outputting the second precursor species in a second molecular form. The method includes causing formation of first plurality of particles, ranging from about first diameter to about a second diameter, by intermixing the first precursor species with the second precursor species. The method also includes cooling the first plurality of particles at a rate of greater than 100°C/s to a specified temperature.
摘要:
Provided herein are electrochemical cells and/or electrode stacks comprising an interlayer disposed proximate to the negative electrode current collector and/or a metal negative electrode, wherein the interlayer is disposed between and in contact with a negative electrode current collector and a solid-state electrolyte separator or between and in contact with a metal negative electrode and a solid-state electrolyte separator.
摘要:
Provided herein are systems and methods for using an ultrasonic vibration generator to apply vibrational energy to a metal negative electrode of a rechargeable battery. In some examples, the application of vibrational energy to the metal negative electrode occurs during a charging event.
摘要:
Provided herein are electrochemical cells having a solid separator, a lithium metal anode, and a positive electrode catholyte wherein the electrochemical cell includes a nitrile, dinitrile, or organic sulfur-including solvent and a lithium salt dissolved therein. Also set forth are methods of making and using these electrochemical cells.