Abstract:
An improved fin field-effect transistor (FinFET) is built on a compound fin, which has a doped core and lightly doped epitaxial channel region between that core and the gate dielectric. The improved structure reduces FinFET random doping fluctuations when doping is used to control threshold voltage. Further, the transistor design affords better source and drain conductance when compared to prior art FinFETs. Three representative embodiments of the key structure are described in detail.
Abstract:
An apparatus and method for manufacturing metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, which MOS transistors are area efficient, and where the drive strength and leakage current of the MOS transistors is improved. The invention uses a dynamic threshold voltage control scheme that does not require a change to existing MOS technology processes. The invention provides a technique that controls the threshold voltage of the transistor. In the OFF state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. In the ON state, the threshold voltage is set to a low value, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The invention is further useful for SRAM, DRAM, NVM devices and other memory cells.
Abstract:
An apparatus and method for manufacturing metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, which MOS transistors are area efficient, and where the drive strength and leakage current of the MOS transistors is improved. The invention uses a dynamic threshold voltage control scheme that does not require a change to existing MOS technology processes. The invention provides a technique that controls the threshold voltage of the transistor. In the OFF state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. In the ON state, the threshold voltage is set to a low value, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The invention is further useful for SRAM, DRAM, NVM devices and other memory cells.
Abstract:
An apparatus and method for manufacturing metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, which MOS transistors are area efficient, and where the drive strength and leakage current of the MOS transistors is improved. The invention uses a dynamic threshold voltage control scheme that does not require a change to existing MOS technology processes. The invention provides a technique that controls the threshold voltage of the transistor. In the OFF state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. In the ON state, the threshold voltage is set to a low value, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The invention is further useful for SRAM, DRAM, NVM devices and other memory cells.