Abstract:
Roughly described, a transistor is formed with a semiconductor 2D material layer wrapped conformally on at least part of a 3D structure. The 3D structure can be for example a ridge made of a dielectric material, or made of dielectric material alternating longitudinally with a semiconductive or conductive material. Alternatively the 3D structure can be tree-shaped. Other shapes are possible as well. Aspects also include methods for making such structures, as well as integrated circuit layouts defining such structures and methods for developing such layouts, a machine readable data storage medium storing design entries which include some which define such structures and layouts, methods for developing such design entries. Aspects further include corrugated wafers which are prepared as an intermediate product for use in fabricating integrated circuits having a semiconductor 2D material layer disposed conformally on a 3D structure.
Abstract:
Non-planar semiconductor devices having hybrid geometry-based active regions are described. For example, a semiconductor device includes a hybrid channel region including a nanowire portion disposed above an omega-FET portion disposed above a fin-FET portion. A gate stack is disposed on exposed surfaces of the hybrid channel region. The gate stack includes a gate dielectric layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the hybrid channel region.
Abstract:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
Abstract:
One embodiment of the invention relates to a method of fabricating a multi-gate transistor (200). During the method a second gate electrode (202) material is selectively removed from a semiconductor structure from which the multi-gate transistor is formed, thereby exposing at least one surface of a first gate electrode material. The exposed surface of the first gate electrode material is deglazed. Subsequently, the first gate electrode material is removed. Other methods and devices are also disclosed.
Abstract:
Provided is a fin field effect transistor (FinFET) having low leakage current and a method of manufacturing the same. The FinFET includes: a bulk silicon substrate! a fence-shaped body formed by patterning the substrate; an insulating layer formed on a surface of the substrate to a first height of the fence-shaped body! a gate insulating layer formed at side walls and an upper surface of the fence-shaped body at which the insulating layer is not formed; a gate electrode formed on the gate insulating layer; source/drain formed at regions of the fence-shaped body where the gate electrode is not formed. The gate electrode includes first and second gate electrodes which are in contact with each other and have different work functions. Particularly, the second gate electrode having a low work function is disposed to be close to the drain. As a result, the FinFET according to the present invention increases a threshold voltage by using a material having the high work function for the gate electrode and lowers the work function of the gate electrode overlapping with the drain, so that gate induced drain leakage (GIDL) can be reduced.
Abstract:
A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
Abstract:
The invention concerns a semiconductor component and a method of manufacturing the same in planar technology, the component comprising a substrate (1), in particular a silicon substrate, and formed thereon mutually spaced isolated connection areas (A), between which an electrically conductive channel area (K) is formed such that it is isolated from these connection areas (A). According to the invention, in order to permit further integration without impairing the electrical parameters with respect to components manufactured in a conventional manner, the three-dimensional channel area (K) formed between the connection areas (A) is prismatic and its cross-sectional area has at least three corners. One of the lateral surfaces of the prism is disposed parallel to the substrate plane.
Abstract:
The present invention provides a transistor having a high on-state current. The transistor includes a plurality of fins, a first oxide semiconductor, a gate insulating film, and a gate electrode. One of adjacent two fins includes a second oxide semiconductor and a third oxide semiconductor. The other includes a fourth oxide semiconductor and the third oxide semiconductor. The second oxide semiconductor and the fourth oxide semiconductor include regions that face each other with the gate electrode positioned therebetween. The gate electrode and the second oxide semiconductor overlap with each other with the gate insulating film and the first oxide semiconductor positioned therebetween. The gate electrode and the fourth oxide semiconductor overlap with each other with the gate insulating film and the first oxide semiconductor positioned therebetween.