Abstract:
Embodiments disclosed herein are directed to photothermal spectroscopy apparatuses and systems for offset synchronous testing of flow assays. Methods of using and operating such photothermal spectroscopy systems are also disclosed.
Abstract:
A novel device, method and systems disclosed managing the thermal challenges of LIBS laser components and a spectrometer in a handheld structure as well the use of simplified light signal collection which includes a bare fiber optic to collect the emitted light in close proximity to (or in contact with) the test material. In one example embodiment of the handheld LIBS device, a burst pulse frequency is 4 kHz is used resulting in a time between pulses of about 250µs which is a factor of 10 above that of other devices in the prior art. In a related embodiment, an active Q-switched laser module is used along with a compact spectrometer module using a transmission grating to improve LIBS measurement while substantially reducing the size of the handheld analyzer.
Abstract:
Disclosed herein is a system (10) for measuring light induced transmission or reflection changes, in particular due to stimulated Raman emission. The system comprises a first light source (12) for generating a first light signal having a first wavelength, a second light source (14) for generating a second light signal having a second wavelength, an optical assembly (16) for superposing said first and second light signals at a sample location (18), and a detec tion means (24) for detecting a transmitted or reflected light signal, in particular a stimulated Raman signal caused by a Raman-active medium when located at said sample location. Here in at least one of the first and second light sources (12, 14) is one or both of actively control lable to emit a time controlled light pattern or operated substantially in CW mode and provid ed with an extra cavity modulation means (64) for generating a time controlled light pattern. The detection means (24) is capable of recording said transmitted or reflected light signal, in particular stimulated Raman signal, as a function of time.
Abstract:
The embodiments herein relate to a system (100) for analyzing a fluid (103). The system (100) comprises a light source (110) configured to emit light for transmission through a first optical transmission means (107a) to a measurement device (105). The measurement device (105) comprises at least a part of the fluid (103) and is configured to be illuminated by the emitted light. The system comprises a second optical transmission means (107b) configured to transmit shadowed or reflected light from the fluid (103) when the measurement device (105) is illuminated to an image capturing device. The image capturing device (113) is configured to capture an image of the fluid (103) in the measurement device (105) based on the transmitted information about the fluid (103). The light source (110) and the one or more image capturing device (113) are remotely arranged from the at least one measurement device (105).
Abstract:
An apparatus configured to obtain a physical property of an object by time-domain spectroscopy includes: a detection unit (101); a delay unit (104) configured to adjust a time difference between generation and detection; a shaping unit (102) configured to collect the electromagnetic wave pulses; a waveform obtaining unit (105) configured to construct a time waveform of the electromagnetic wave pulses; and a collecting position adjusting unit (106) configured to adjust a collecting position. When the collecting position is moved, an amount of adjustment when the collecting position matches first (114) and second reflection portions (115), respectively, of the object, and a difference by the delay unit required for detecting first and second pulses of the time waveform are obtained, and from an amount of change of the amount of adjustment and the difference, a thickness and a refractive index of a region between the first and second reflection portions of the object are calculated.
Abstract:
The present invention provides a technique that uses discrete wavelengths of illumination of an ore sample, and through the use of optical filters and laser illumination the signal-to-noise ratio of the measurement can be greatly improved, and may take the form of apparatus featuring a signal processor configured to: receive signaling containing information about a spectral reflectance caused by discrete wavelengths illuminating an ore sample; and determine information about a bitumen content of the ore sample based at least partly on the signaling. The signal processor may provide corresponding signaling containing information about the bitumen content of the ore sample, including for further processing, printing or displaying.