Abstract:
Provided herein are DNA binding domains comprising a plurality of repeat units, wherein each repeat unit is expanded or contracted in length. Also provided herein are DNA binding domains comprising a plurality of repeat units, wherein each repeat unit is separated from a neighboring repeat unit by a linker. In certain aspects, the linker includes a recognition site. Also disclosed are DNA binding proteins that include a fragment of N-cap sequence of a TALE protein. The TALE protein may be a Xanthomonas TALE protein.
Abstract:
Disclosed herein are methods and compositions for genomic editing of one or more genes in zebrafish, using fusion proteins comprising a zinc finger protein and a cleavage domain or cleavage half-domain. Polynucleotides encoding said fusion proteins are also provided, as are cells comprising said polynucleotides and fusion proteins.
Abstract:
The present disclosure relates to engineered zinc finger proteins that target 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) genes in plants and methods of using such zinc finger proteins in modulating gene expression, gene inactivation, and targeted gene modification. In particular, the disclosure pertains to zinc finger nucleases for targeted cleavage and alteration of EPSPS genes.
Abstract:
Methods and compositions for modifying stem cells using one or more ZFPs are disclosed. Such methods and compositions are useful for facilitating processes such as, for example, dedifferentiating cells, differentiating stems cells into the desired phenotype, propagating stem cells and/or facilitating cloning.
Abstract:
DNA cleaving enzymes are disclosed. The DNA cleaving enzymes are fused to a heterologous DNA binding domain that is designed to bind to a target nucleic acid sequence. Nucleic acids and expression cassettes encoding the DNA cleaving enzymes are also provided. Methods for genome editing using the DNA cleaving enzymes, fusion proteins, and compositions thereof are disclosed herein.
Abstract:
Disclosed herein are methods and compositions for modulating the expression of a HLA locus or for selectively deleting or manipulating a HLA locus or HLA regulator.
Abstract:
Disclosed herein are linear donor molecules comprising homology arms of 50-750 base pairs (e.g., 50-100 base pairs) flanking one or more sequences of interest. The donor molecules and/or compositions comprising these molecules can be used in methods for targeted integration of an exogenous sequence into a specified region of interest in the genome of a cell.
Abstract:
Disclosed herein are methods and compositions for targeted integration of an exogenous sequence into the human PPP1R12C locus, for example, for expression of a polypeptide of interest.
Abstract:
Disclosed herein are methods and compositions for targeted integration of a exogenous sequence into a predetermined target site in a genome for use, for example, in protein expression and gene inactivation.